
Logging

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Logging 362 / 443

Logging

Java is equipped with a logging system that can be used to keep track of
executions. . .

and limit the us of System.out. println (...) !

Logging system manages a default logger that we get by calling:

Logger . getGLoba l ()

A logger provides method to register relevant event of our application:

Logger . getGLoba l () . i n f o (”Opening f i l e ”+ f i l e n ame) ;

The result is something of the form:

Apr 24 , 2018 12 : 30 : 16 PM i t . unicam . c s . pa . examples .
ExExcep t i on s data . t x t

INFO : Opening f i l e data . t x t

Prof. Michele Loreti Logging 363 / 443

Logging

Java is equipped with a logging system that can be used to keep track of
executions. . . and limit the us of System.out. println (...) !

Logging system manages a default logger that we get by calling:

Logger . getGLoba l ()

A logger provides method to register relevant event of our application:

Logger . getGLoba l () . i n f o (”Opening f i l e ”+ f i l e n ame) ;

The result is something of the form:

Apr 24 , 2018 12 : 30 : 16 PM i t . unicam . c s . pa . examples .
ExExcep t i on s data . t x t

INFO : Opening f i l e data . t x t

Prof. Michele Loreti Logging 363 / 443

Logging

Java is equipped with a logging system that can be used to keep track of
executions. . . and limit the us of System.out. println (...) !

Logging system manages a default logger that we get by calling:

Logger . getGLoba l ()

A logger provides method to register relevant event of our application:

Logger . getGLoba l () . i n f o (”Opening f i l e ”+ f i l e n ame) ;

The result is something of the form:

Apr 24 , 2018 12 : 30 : 16 PM i t . unicam . c s . pa . examples .
ExExcep t i on s data . t x t

INFO : Opening f i l e data . t x t

Prof. Michele Loreti Logging 363 / 443

Logging

Java is equipped with a logging system that can be used to keep track of
executions. . . and limit the us of System.out. println (...) !

Logging system manages a default logger that we get by calling:

Logger . getGLoba l ()

A logger provides method to register relevant event of our application:

Logger . getGLoba l () . i n f o (”Opening f i l e ”+ f i l e n ame) ;

The result is something of the form:

Apr 24 , 2018 12 : 30 : 16 PM i t . unicam . c s . pa . examples .
ExExcep t i on s data . t x t

INFO : Opening f i l e data . t x t

Prof. Michele Loreti Logging 363 / 443

Logging

Java is equipped with a logging system that can be used to keep track of
executions. . . and limit the us of System.out. println (...) !

Logging system manages a default logger that we get by calling:

Logger . getGLoba l ()

A logger provides method to register relevant event of our application:

Logger . getGLoba l () . i n f o (”Opening f i l e ”+ f i l e n ame) ;

The result is something of the form:

Apr 24 , 2018 12 : 30 : 16 PM i t . unicam . c s . pa . examples .
ExExcep t i on s data . t x t

INFO : Opening f i l e data . t x t

Prof. Michele Loreti Logging 363 / 443

Logging

In an application we can use different loggers that are associated with a
name:

Logger l o g g e r = Logger . ge tLogge r (”com . mycompany . myapp”) ;

The structure of the name recalls a hierarchy among the loggers.

Each logger is equipped with a level: OFF, SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, ALL.

You can log at the right level:

l o g g e r . l o g (l e v e l , message) ;

The level of displayed message can be set:

l o g g e r . s e t L e v e l (l e v e l) ;

Prof. Michele Loreti Logging 364 / 443

Logging

In an application we can use different loggers that are associated with a
name:

Logger l o g g e r = Logger . ge tLogge r (”com . mycompany . myapp”) ;

The structure of the name recalls a hierarchy among the loggers.

Each logger is equipped with a level: OFF, SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, ALL.

You can log at the right level:

l o g g e r . l o g (l e v e l , message) ;

The level of displayed message can be set:

l o g g e r . s e t L e v e l (l e v e l) ;

Prof. Michele Loreti Logging 364 / 443

Logging

In an application we can use different loggers that are associated with a
name:

Logger l o g g e r = Logger . ge tLogge r (”com . mycompany . myapp”) ;

The structure of the name recalls a hierarchy among the loggers.

Each logger is equipped with a level: OFF, SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, ALL.

You can log at the right level:

l o g g e r . l o g (l e v e l , message) ;

The level of displayed message can be set:

l o g g e r . s e t L e v e l (l e v e l) ;

Prof. Michele Loreti Logging 364 / 443

Logging

In an application we can use different loggers that are associated with a
name:

Logger l o g g e r = Logger . ge tLogge r (”com . mycompany . myapp”) ;

The structure of the name recalls a hierarchy among the loggers.

Each logger is equipped with a level: OFF, SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, ALL.

You can log at the right level:

l o g g e r . l o g (l e v e l , message) ;

The level of displayed message can be set:

l o g g e r . s e t L e v e l (l e v e l) ;

Prof. Michele Loreti Logging 364 / 443

Logging

In an application we can use different loggers that are associated with a
name:

Logger l o g g e r = Logger . ge tLogge r (”com . mycompany . myapp”) ;

The structure of the name recalls a hierarchy among the loggers.

Each logger is equipped with a level: OFF, SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, ALL.

You can log at the right level:

l o g g e r . l o g (l e v e l , message) ;

The level of displayed message can be set:

l o g g e r . s e t L e v e l (l e v e l) ;

Prof. Michele Loreti Logging 364 / 443

Logger methods. . .

log(...) Methods: take a log level, a message string, and optionally some
parameters to the message string.

logp(...) Methods: are similar to the log methods, but also take an
explicit source class name and method name.

logrp(...) Methods: are similar to logp method, but also take an explicit
bundle object to be used in localising the log message.

Utility methods: for tracing method entries (the entering methods),
method returns (the exiting methods) and throwing exceptions (the
throwing methods).

Log level methods: These methods are named after the standard Level
names and take a single argument, a message string.

Prof. Michele Loreti Logging 365 / 443

Logger methods. . .

log(...) Methods: take a log level, a message string, and optionally some
parameters to the message string.

logp(...) Methods: are similar to the log methods, but also take an
explicit source class name and method name.

logrp(...) Methods: are similar to logp method, but also take an explicit
bundle object to be used in localising the log message.

Utility methods: for tracing method entries (the entering methods),
method returns (the exiting methods) and throwing exceptions (the
throwing methods).

Log level methods: These methods are named after the standard Level
names and take a single argument, a message string.

Prof. Michele Loreti Logging 365 / 443

Logger methods. . .

log(...) Methods: take a log level, a message string, and optionally some
parameters to the message string.

logp(...) Methods: are similar to the log methods, but also take an
explicit source class name and method name.

logrp(...) Methods: are similar to logp method, but also take an explicit
bundle object to be used in localising the log message.

Utility methods: for tracing method entries (the entering methods),
method returns (the exiting methods) and throwing exceptions (the
throwing methods).

Log level methods: These methods are named after the standard Level
names and take a single argument, a message string.

Prof. Michele Loreti Logging 365 / 443

Logger methods. . .

log(...) Methods: take a log level, a message string, and optionally some
parameters to the message string.

logp(...) Methods: are similar to the log methods, but also take an
explicit source class name and method name.

logrp(...) Methods: are similar to logp method, but also take an explicit
bundle object to be used in localising the log message.

Utility methods: for tracing method entries (the entering methods),
method returns (the exiting methods) and throwing exceptions (the
throwing methods).

Log level methods: These methods are named after the standard Level
names and take a single argument, a message string.

Prof. Michele Loreti Logging 365 / 443

Logger methods. . .

log(...) Methods: take a log level, a message string, and optionally some
parameters to the message string.

logp(...) Methods: are similar to the log methods, but also take an
explicit source class name and method name.

logrp(...) Methods: are similar to logp method, but also take an explicit
bundle object to be used in localising the log message.

Utility methods: for tracing method entries (the entering methods),
method returns (the exiting methods) and throwing exceptions (the
throwing methods).

Log level methods: These methods are named after the standard Level
names and take a single argument, a message string.

Prof. Michele Loreti Logging 365 / 443

Logger methods. . .

log(...) Methods: take a log level, a message string, and optionally some
parameters to the message string.

logp(...) Methods: are similar to the log methods, but also take an
explicit source class name and method name.

logrp(...) Methods: are similar to logp method, but also take an explicit
bundle object to be used in localising the log message.

Utility methods: for tracing method entries (the entering methods),
method returns (the exiting methods) and throwing exceptions (the
throwing methods).

Log level methods: These methods are named after the standard Level
names and take a single argument, a message string.

Prof. Michele Loreti Logging 365 / 443

To be continued. . .

Prof. Michele Loreti Logging 366 / 443

