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Building Java applications. . .

The basic tool we can use for building Java applications is javac.
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Building Java applications. . .

The basic tool we can use for building Java applications is javac.

This is the default Java compiler distributed with the Java SDK .

The javac tool reads class and interface definitions, written in the Java
programming language, and compiles them into bytecode class files.
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Building Java applications. . .

We can specify options and input files when javac is executed:

javac [options] [source-files]
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Input files can be specified as arguments to the javac command or kept in
a argument files (see later).
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Building Java applications. . .

We can specify options and input files when javac is executed:

javac [options] [source-files]

Input files can be specified as arguments to the javac command or kept in
a argument files (see later).

Source files should be arranged in a directory hierarchy
corresponding to the fully qualified names of the types they contain.
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Example. ..

package it.unicam.cs.pa.battleshipl9;

public interface Player {
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Structuring you Java project

The specific structure of a Java project depends on the tool you use to
develop your application.
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The specific structure of a Java project depends on the tool you use to
develop your application.

Basic rules:
m different folders for sources and generated classes,

B 3 separated folder for tests.
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Structuring you Java project

The specific structure of a Java project depends on the tool you use to
develop your application.

Basic rules:
m different folders for sources and generated classes,
B 3 separated folder for tests.

Eclipse Java Projects respect the rules above.

B it.unicam.cs.pa.battleship19

I bin
Il src
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Standard options. . .

One of the most standard options of javac is —d that can be used to
specify the destination directory for the generated classes.

javac -d ../bin/ it/unicam/cs/pa/battleshipl19/Player. java
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Standard options. ..

One of the most standard options of javac is —d that can be used to
specify the destination directory for the generated classes.

javac -d ../bin/ it/unicam/cs/pa/battleshipl19/Player. java
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GameResult.class
B LaunchResult.class
Location.class
ShipLocation.class
Player.class
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Standard options. ..

One of the most standard options of javac is —d that can be used to
specify the destination directory for the generated classes.

javac -d ../bin/ it/unicam/cs/pa/battleshipl19/Player. java
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Direction.class

B ResultType.class
GameResult.class
B LaunchResult.class
Location.class
ShipLocation.class
Player.class

To see the details of the building process, the option -verbose can be

used.
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Standard options. . .
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Standard options. . .

® -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. ..
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set, the current working directory is used instead.
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Standard options. . .

® -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. ..

if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

® -p (or module-path): indicates the location of necessary application
modules. . .

. this option is only applicable to Java 9 and above.
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Standard options. . .

® -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. ..

if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

® -p (or module-path): indicates the location of necessary application
modules. . .

. this option is only applicable to Java 9 and above.
® —g: Generate all debugging info.
® —-help: can be used to obtain a full list of the available options.
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Compilation arguments and file...

Instead of passing arguments directly to the javac tool, we can store them
in argument files. The names of those files, prefixed with the @ character,
are then used as command arguments.
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Compilation arguments and file...

Instead of passing arguments directly to the javac tool, we can store them
in argument files. The names of those files, prefixed with the @ character,
are then used as command arguments.

When the javac command encounters an argument starting with @, it
interprets the following characters as the path to a file and expands the
file's content into an argument list. Spaces and newline characters can be
used to separate arguments included in such an argument file.
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Compilation arguments and file...

Instead of passing arguments directly to the javac tool, we can store them
in argument files. The names of those files, prefixed with the @ character,
are then used as command arguments.

When the javac command encounters an argument starting with @, it
interprets the following characters as the path to a file and expands the
file's content into an argument list. Spaces and newline characters can be
used to separate arguments included in such an argument file.

Example:

-d ../bin/
-verbatim
it/unicam/cs/pa/battleshipl9/Player. java
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To be continued. ..
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