Building Java Applications

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Building Java Applications 444 / 501

Building Java applications. . .

The basic tool we can use for building Java applications is javac.

Prof. Michele Loreti Building Java Applications 445 / 501

Building Java applications. . .

The basic tool we can use for building Java applications is javac.

This is the default Java compiler distributed with the Java SDK .

Prof. Michele Loreti Building Java Applications 445 / 501

Building Java applications. . .

The basic tool we can use for building Java applications is javac.

This is the default Java compiler distributed with the Java SDK .

The javac tool reads class and interface definitions, written in the Java
programming language, and compiles them into bytecode class files.

Prof. Michele Loreti Building Java Applications 445 / 501

Building Java applications. . .

We can specify options and input files when javac is executed:

javac [options] [source-files]

Prof. Michele Loreti Building Java Applications 446 / 501

Building Java applications. . .

We can specify options and input files when javac is executed:

javac [options] [source-files]

Input files can be specified as arguments to the javac command or kept in
a argument files (see later).

Prof. Michele Loreti Building Java Applications 446 / 501

Building Java applications. . .

We can specify options and input files when javac is executed:

javac [options] [source-files]

Input files can be specified as arguments to the javac command or kept in
a argument files (see later).

Source files should be arranged in a directory hierarchy
corresponding to the fully qualified names of the types they contain.

Prof. Michele Loreti Building Java Applications 446 / 501

Example. ..

package it.unicam.cs.pa.battleshipl9;

public interface Player {

Prof. Michele Loreti Building Java Applications 447 / 501

S w
Example. ..

package it.unicam.cs.pa.battleshipl9;

public interface Player {

Yy lit
B unicam

v lcs
=)
v [battleship19
R Player.java

Prof. Michele Loreti Building Java Applications 447 / 501

Structuring you Java project

The specific structure of a Java project depends on the tool you use to
develop your application.

Prof. Michele Loreti Building Java Applications 448 / 501

Structuring you Java project

The specific structure of a Java project depends on the tool you use to
develop your application.

Basic rules:
m different folders for sources and generated classes,

B 3 separated folder for tests.

Prof. Michele Loreti Building Java Applications 448 / 501

Structuring you Java project

The specific structure of a Java project depends on the tool you use to
develop your application.

Basic rules:
m different folders for sources and generated classes,
B 3 separated folder for tests.

Eclipse Java Projects respect the rules above.

Prof. Michele Loreti Building Java Applications 448 / 501

Structuring you Java project

The specific structure of a Java project depends on the tool you use to
develop your application.

Basic rules:
m different folders for sources and generated classes,
B 3 separated folder for tests.

Eclipse Java Projects respect the rules above.

B it.unicam.cs.pa.battleship19

I bin
Il src

Prof. Michele Loreti Building Java Applications 448 / 501

Standard options. . .

One of the most standard options of javac is —d that can be used to
specify the destination directory for the generated classes.

javac -d ../bin/ it/unicam/cs/pa/battleshipl19/Player. java

Prof. Michele Loreti Building Java Applications 449 / 501

Standard options. ..

One of the most standard options of javac is —d that can be used to
specify the destination directory for the generated classes.

javac -d ../bin/ it/unicam/cs/pa/battleshipl19/Player. java

v [unicam
vV Ecs
v i pa
[battleship19

Direction.class

B ResultType.class
GameResult.class
B LaunchResult.class
Location.class
ShipLocation.class
Player.class

Prof. Michele Loreti Building Java Applications 449 / 501

Standard options. ..

One of the most standard options of javac is —d that can be used to
specify the destination directory for the generated classes.

javac -d ../bin/ it/unicam/cs/pa/battleshipl19/Player. java

v [bin
7 it
v [unicam
vV Ecs
v i pa
[battleship19

Direction.class

B ResultType.class
GameResult.class
B LaunchResult.class
Location.class
ShipLocation.class
Player.class

To see the details of the building process, the option -verbose can be

used.
Prof. Michele Loreti Building Java Applications 449 / 501

Standard options. . .

Prof. Michele Loreti Building Java Applications 450 / 501

Standard options. . .

® -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. ..

Prof. Michele Loreti Building Java Applications 450 / 501

Standard options. . .

® -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. ..

if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

Prof. Michele Loreti Building Java Applications 450 / 501

Standard options. . .

® -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. ..

if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

® -p (or module-path): indicates the location of necessary application
modules. . .

Prof. Michele Loreti Building Java Applications 450 / 501

Standard options. . .

® -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. ..

if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

® -p (or module-path): indicates the location of necessary application
modules. . .

. this option is only applicable to Java 9 and above.

Prof. Michele Loreti Building Java Applications 450 / 501

Standard options. . .

® -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. ..

if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

® -p (or module-path): indicates the location of necessary application
modules. . .

. this option is only applicable to Java 9 and above.

® —g: Generate all debugging info.

Prof. Michele Loreti Building Java Applications 450 / 501

Standard options. . .

® -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. ..

if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

® -p (or module-path): indicates the location of necessary application
modules. . .

. this option is only applicable to Java 9 and above.
® —g: Generate all debugging info.
® —-help: can be used to obtain a full list of the available options.

Prof. Michele Loreti Building Java Applications 450 / 501

Compilation arguments and file...

Instead of passing arguments directly to the javac tool, we can store them
in argument files. The names of those files, prefixed with the @ character,
are then used as command arguments.

Prof. Michele Loreti Building Java Applications 451 / 501

Compilation arguments and file...

Instead of passing arguments directly to the javac tool, we can store them
in argument files. The names of those files, prefixed with the @ character,
are then used as command arguments.

When the javac command encounters an argument starting with @, it
interprets the following characters as the path to a file and expands the
file's content into an argument list. Spaces and newline characters can be
used to separate arguments included in such an argument file.

Prof. Michele Loreti Building Java Applications 451 / 501

Compilation arguments and file...

Instead of passing arguments directly to the javac tool, we can store them
in argument files. The names of those files, prefixed with the @ character,
are then used as command arguments.

When the javac command encounters an argument starting with @, it
interprets the following characters as the path to a file and expands the
file's content into an argument list. Spaces and newline characters can be
used to separate arguments included in such an argument file.

Example:

-d ../bin/
-verbatim
it/unicam/cs/pa/battleshipl9/Player. java

Prof. Michele Loreti Building Java Applications 451 / 501

To be continued. ..

Prof. Michele Loreti Building Java Applications 452 / 501

