
Building Java Applications

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Building Java Applications 444 / 501



Building Java applications. . .

The basic tool we can use for building Java applications is javac.

This is the default Java compiler distributed with the Java SDK .

The javac tool reads class and interface definitions, written in the Java
programming language, and compiles them into bytecode class files.

Prof. Michele Loreti Building Java Applications 445 / 501



Building Java applications. . .

The basic tool we can use for building Java applications is javac.

This is the default Java compiler distributed with the Java SDK .

The javac tool reads class and interface definitions, written in the Java
programming language, and compiles them into bytecode class files.

Prof. Michele Loreti Building Java Applications 445 / 501



Building Java applications. . .

The basic tool we can use for building Java applications is javac.

This is the default Java compiler distributed with the Java SDK .

The javac tool reads class and interface definitions, written in the Java
programming language, and compiles them into bytecode class files.

Prof. Michele Loreti Building Java Applications 445 / 501



Building Java applications. . .

We can specify options and input files when javac is executed:

javac [options] [source-files]

Input files can be specified as arguments to the javac command or kept in
a argument files (see later).

Source files should be arranged in a directory hierarchy
corresponding to the fully qualified names of the types they contain.

Prof. Michele Loreti Building Java Applications 446 / 501



Building Java applications. . .

We can specify options and input files when javac is executed:

javac [options] [source-files]

Input files can be specified as arguments to the javac command or kept in
a argument files (see later).

Source files should be arranged in a directory hierarchy
corresponding to the fully qualified names of the types they contain.

Prof. Michele Loreti Building Java Applications 446 / 501



Building Java applications. . .

We can specify options and input files when javac is executed:

javac [options] [source-files]

Input files can be specified as arguments to the javac command or kept in
a argument files (see later).

Source files should be arranged in a directory hierarchy
corresponding to the fully qualified names of the types they contain.

Prof. Michele Loreti Building Java Applications 446 / 501



Example. . .

package i t . unicam . c s . pa . b a t t l e s h i p 1 9 ;

p u b l i c i n t e r f a c e P l a y e r {

. . .

}

Prof. Michele Loreti Building Java Applications 447 / 501



Example. . .

package i t . unicam . c s . pa . b a t t l e s h i p 1 9 ;

p u b l i c i n t e r f a c e P l a y e r {

. . .

}

Prof. Michele Loreti Building Java Applications 447 / 501



Structuring you Java project

The specific structure of a Java project depends on the tool you use to
develop your application.

Basic rules:

� different folders for sources and generated classes;

� a separated folder for tests.

Eclipse Java Projects respect the rules above.

Prof. Michele Loreti Building Java Applications 448 / 501



Structuring you Java project

The specific structure of a Java project depends on the tool you use to
develop your application.

Basic rules:

� different folders for sources and generated classes;

� a separated folder for tests.

Eclipse Java Projects respect the rules above.

Prof. Michele Loreti Building Java Applications 448 / 501



Structuring you Java project

The specific structure of a Java project depends on the tool you use to
develop your application.

Basic rules:

� different folders for sources and generated classes;

� a separated folder for tests.

Eclipse Java Projects respect the rules above.

Prof. Michele Loreti Building Java Applications 448 / 501



Structuring you Java project

The specific structure of a Java project depends on the tool you use to
develop your application.

Basic rules:

� different folders for sources and generated classes;

� a separated folder for tests.

Eclipse Java Projects respect the rules above.

Prof. Michele Loreti Building Java Applications 448 / 501



Standard options. . .

One of the most standard options of javac is -d that can be used to
specify the destination directory for the generated classes.

javac -d ../bin/ it/unicam/cs/pa/battleship19/Player.java

To see the details of the building process, the option -verbose can be
used.

Prof. Michele Loreti Building Java Applications 449 / 501



Standard options. . .

One of the most standard options of javac is -d that can be used to
specify the destination directory for the generated classes.

javac -d ../bin/ it/unicam/cs/pa/battleship19/Player.java

To see the details of the building process, the option -verbose can be
used.

Prof. Michele Loreti Building Java Applications 449 / 501



Standard options. . .

One of the most standard options of javac is -d that can be used to
specify the destination directory for the generated classes.

javac -d ../bin/ it/unicam/cs/pa/battleship19/Player.java

To see the details of the building process, the option -verbose can be
used.

Prof. Michele Loreti Building Java Applications 449 / 501



Standard options. . .

� -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. . .

. . . if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

� -p (or module-path): indicates the location of necessary application
modules. . .

. . . this option is only applicable to Java 9 and above.

� -g: Generate all debugging info.

� --help: can be used to obtain a full list of the available options.

Prof. Michele Loreti Building Java Applications 450 / 501



Standard options. . .

� -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. . .

. . . if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

� -p (or module-path): indicates the location of necessary application
modules. . .

. . . this option is only applicable to Java 9 and above.

� -g: Generate all debugging info.

� --help: can be used to obtain a full list of the available options.

Prof. Michele Loreti Building Java Applications 450 / 501



Standard options. . .

� -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. . .

. . . if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

� -p (or module-path): indicates the location of necessary application
modules. . .

. . . this option is only applicable to Java 9 and above.

� -g: Generate all debugging info.

� --help: can be used to obtain a full list of the available options.

Prof. Michele Loreti Building Java Applications 450 / 501



Standard options. . .

� -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. . .

. . . if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

� -p (or module-path): indicates the location of necessary application
modules. . .

. . . this option is only applicable to Java 9 and above.

� -g: Generate all debugging info.

� --help: can be used to obtain a full list of the available options.

Prof. Michele Loreti Building Java Applications 450 / 501



Standard options. . .

� -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. . .

. . . if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

� -p (or module-path): indicates the location of necessary application
modules. . .

. . . this option is only applicable to Java 9 and above.

� -g: Generate all debugging info.

� --help: can be used to obtain a full list of the available options.

Prof. Michele Loreti Building Java Applications 450 / 501



Standard options. . .

� -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. . .

. . . if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

� -p (or module-path): indicates the location of necessary application
modules. . .

. . . this option is only applicable to Java 9 and above.

� -g: Generate all debugging info.

� --help: can be used to obtain a full list of the available options.

Prof. Michele Loreti Building Java Applications 450 / 501



Standard options. . .

� -cp (or -classpath, class-path): specifies where types required to
compile our source files can be found. . .

. . . if this option is missing and the CLASSPATH environment variable isnt
set, the current working directory is used instead.

� -p (or module-path): indicates the location of necessary application
modules. . .

. . . this option is only applicable to Java 9 and above.

� -g: Generate all debugging info.

� --help: can be used to obtain a full list of the available options.

Prof. Michele Loreti Building Java Applications 450 / 501



Compilation arguments and file...

Instead of passing arguments directly to the javac tool, we can store them
in argument files. The names of those files, prefixed with the @ character,
are then used as command arguments.

When the javac command encounters an argument starting with @, it
interprets the following characters as the path to a file and expands the
file’s content into an argument list. Spaces and newline characters can be
used to separate arguments included in such an argument file.

Example:

-d ../bin/

-verbatim

it/unicam/cs/pa/battleship19/Player.java

Prof. Michele Loreti Building Java Applications 451 / 501



Compilation arguments and file...

Instead of passing arguments directly to the javac tool, we can store them
in argument files. The names of those files, prefixed with the @ character,
are then used as command arguments.

When the javac command encounters an argument starting with @, it
interprets the following characters as the path to a file and expands the
file’s content into an argument list. Spaces and newline characters can be
used to separate arguments included in such an argument file.

Example:

-d ../bin/

-verbatim

it/unicam/cs/pa/battleship19/Player.java

Prof. Michele Loreti Building Java Applications 451 / 501



Compilation arguments and file...

Instead of passing arguments directly to the javac tool, we can store them
in argument files. The names of those files, prefixed with the @ character,
are then used as command arguments.

When the javac command encounters an argument starting with @, it
interprets the following characters as the path to a file and expands the
file’s content into an argument list. Spaces and newline characters can be
used to separate arguments included in such an argument file.

Example:

-d ../bin/

-verbatim

it/unicam/cs/pa/battleship19/Player.java

Prof. Michele Loreti Building Java Applications 451 / 501



To be continued. . .

Prof. Michele Loreti Building Java Applications 452 / 501


