
Testing

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Testing 453 / 501

Testing. . .

What are software tests? A software test is a piece of software, which
executes another piece of software, to check if that code results in the
expected state (state testing) or executes the expected sequence of events
(behavior testing).

Why are software tests helpful? Software unit tests help the developer
to verify that the logic of a piece of the program is correct.

Running tests automatically helps to identify software regressions
introduced by changes in the source code.

Having a high test coverage of your code allows you to continue
developing features without having to perform lots of manual tests.

Prof. Michele Loreti Testing 454 / 501

Testing. . .

What are software tests? A software test is a piece of software, which
executes another piece of software, to check if that code results in the
expected state (state testing) or executes the expected sequence of events
(behavior testing).

Why are software tests helpful? Software unit tests help the developer
to verify that the logic of a piece of the program is correct.

Running tests automatically helps to identify software regressions
introduced by changes in the source code.

Having a high test coverage of your code allows you to continue
developing features without having to perform lots of manual tests.

Prof. Michele Loreti Testing 454 / 501

Testing. . .

What are software tests? A software test is a piece of software, which
executes another piece of software, to check if that code results in the
expected state (state testing) or executes the expected sequence of events
(behavior testing).

Why are software tests helpful? Software unit tests help the developer
to verify that the logic of a piece of the program is correct.

Running tests automatically helps to identify software regressions
introduced by changes in the source code.

Having a high test coverage of your code allows you to continue
developing features without having to perform lots of manual tests.

Prof. Michele Loreti Testing 454 / 501

Testing. . .

What are software tests? A software test is a piece of software, which
executes another piece of software, to check if that code results in the
expected state (state testing) or executes the expected sequence of events
(behavior testing).

Why are software tests helpful? Software unit tests help the developer
to verify that the logic of a piece of the program is correct.

Running tests automatically helps to identify software regressions
introduced by changes in the source code.

Having a high test coverage of your code allows you to continue
developing features without having to perform lots of manual tests.

Prof. Michele Loreti Testing 454 / 501

Terminology

The code which is tested is typically called the code under test. If you are
testing an application, this is called the application under test.

A software test fixture sets up the system for the testing process by
providing it with all the necessary code to initialise it, thereby satisfying
whatever preconditions there may be.

Example: load a database with known parameters from a customer site
before running your test.

Prof. Michele Loreti Testing 455 / 501

Terminology

The code which is tested is typically called the code under test. If you are
testing an application, this is called the application under test.

A software test fixture sets up the system for the testing process by
providing it with all the necessary code to initialise it, thereby satisfying
whatever preconditions there may be.

Example: load a database with known parameters from a customer site
before running your test.

Prof. Michele Loreti Testing 455 / 501

Terminology

The code which is tested is typically called the code under test. If you are
testing an application, this is called the application under test.

A software test fixture sets up the system for the testing process by
providing it with all the necessary code to initialise it, thereby satisfying
whatever preconditions there may be.

Example: load a database with known parameters from a customer site
before running your test.

Prof. Michele Loreti Testing 455 / 501

Testing levels

Unit Testing: Unit testing refers to tests that verify the functionality of a
specific section of code, usually at the function level.

Integration testing: Integration testing is any type of software testing
that seeks to verify the interfaces between components against a software
design.

System testing: System testing tests a completely integrated system to
verify that the system meets its requirements.

Prof. Michele Loreti Testing 456 / 501

Testing levels

Unit Testing: Unit testing refers to tests that verify the functionality of a
specific section of code, usually at the function level.

Integration testing: Integration testing is any type of software testing
that seeks to verify the interfaces between components against a software
design.

System testing: System testing tests a completely integrated system to
verify that the system meets its requirements.

Prof. Michele Loreti Testing 456 / 501

Testing levels

Unit Testing: Unit testing refers to tests that verify the functionality of a
specific section of code, usually at the function level.

Integration testing: Integration testing is any type of software testing
that seeks to verify the interfaces between components against a software
design.

System testing: System testing tests a completely integrated system to
verify that the system meets its requirements.

Prof. Michele Loreti Testing 456 / 501

Unit test and unit testing

A unit test is a piece of code written by a developer that executes a
specific functionality in the code to be tested and asserts a certain
behaviour or state.

The percentage of code which is tested by unit tests is typically called test
coverage.

A unit test targets a small unit of code, e.g., a method or a class. External
dependencies should be removed from unit tests, e.g., by replacing the
dependency with a test implementation or a (mock) object created by a
test framework.

Unit tests are not suitable for testing complex user interface or component
interaction. For this, you should develop integration tests.

Prof. Michele Loreti Testing 457 / 501

Unit test and unit testing

A unit test is a piece of code written by a developer that executes a
specific functionality in the code to be tested and asserts a certain
behaviour or state.

The percentage of code which is tested by unit tests is typically called test
coverage.

A unit test targets a small unit of code, e.g., a method or a class. External
dependencies should be removed from unit tests, e.g., by replacing the
dependency with a test implementation or a (mock) object created by a
test framework.

Unit tests are not suitable for testing complex user interface or component
interaction. For this, you should develop integration tests.

Prof. Michele Loreti Testing 457 / 501

Unit test and unit testing

A unit test is a piece of code written by a developer that executes a
specific functionality in the code to be tested and asserts a certain
behaviour or state.

The percentage of code which is tested by unit tests is typically called test
coverage.

A unit test targets a small unit of code, e.g., a method or a class. External
dependencies should be removed from unit tests, e.g., by replacing the
dependency with a test implementation or a (mock) object created by a
test framework.

Unit tests are not suitable for testing complex user interface or component
interaction. For this, you should develop integration tests.

Prof. Michele Loreti Testing 457 / 501

Unit test and unit testing

A unit test is a piece of code written by a developer that executes a
specific functionality in the code to be tested and asserts a certain
behaviour or state.

The percentage of code which is tested by unit tests is typically called test
coverage.

A unit test targets a small unit of code, e.g., a method or a class. External
dependencies should be removed from unit tests, e.g., by replacing the
dependency with a test implementation or a (mock) object created by a
test framework.

Unit tests are not suitable for testing complex user interface or component
interaction. For this, you should develop integration tests.

Prof. Michele Loreti Testing 457 / 501

Which part of the software should be tested?

What should be tested is a highly controversial topic. Some developers
believe every statement in your code should be tested.

You should write software tests for the critical and complex parts of your
application. If you introduce new features a solid test suite also protects
you against regression in existing code.

In general it it safe to ignore trivial code. For example, it is typical useless
to write tests for getter and setter methods which simply assign values to
fields.

If you start developing tests for an existing code base without any tests, it
is good practice to start writing tests for code in which most of the errors
happened in the past. This way you can focus on the critical parts of your
application.

Prof. Michele Loreti Testing 458 / 501

Which part of the software should be tested?

What should be tested is a highly controversial topic. Some developers
believe every statement in your code should be tested.

You should write software tests for the critical and complex parts of your
application. If you introduce new features a solid test suite also protects
you against regression in existing code.

In general it it safe to ignore trivial code. For example, it is typical useless
to write tests for getter and setter methods which simply assign values to
fields.

If you start developing tests for an existing code base without any tests, it
is good practice to start writing tests for code in which most of the errors
happened in the past. This way you can focus on the critical parts of your
application.

Prof. Michele Loreti Testing 458 / 501

Which part of the software should be tested?

What should be tested is a highly controversial topic. Some developers
believe every statement in your code should be tested.

You should write software tests for the critical and complex parts of your
application. If you introduce new features a solid test suite also protects
you against regression in existing code.

In general it it safe to ignore trivial code. For example, it is typical useless
to write tests for getter and setter methods which simply assign values to
fields.

If you start developing tests for an existing code base without any tests, it
is good practice to start writing tests for code in which most of the errors
happened in the past. This way you can focus on the critical parts of your
application.

Prof. Michele Loreti Testing 458 / 501

Which part of the software should be tested?

What should be tested is a highly controversial topic. Some developers
believe every statement in your code should be tested.

You should write software tests for the critical and complex parts of your
application. If you introduce new features a solid test suite also protects
you against regression in existing code.

In general it it safe to ignore trivial code. For example, it is typical useless
to write tests for getter and setter methods which simply assign values to
fields.

If you start developing tests for an existing code base without any tests, it
is good practice to start writing tests for code in which most of the errors
happened in the past. This way you can focus on the critical parts of your
application.

Prof. Michele Loreti Testing 458 / 501

JUnit. . .

JUnit is a test framework which uses annotations to identify methods that
specify a test. JUnit is an open source project hosted at Github.

A JUnit test is a method contained in a class which is only used for
testing. This is called a Test class. To define that a certain method is a
test method, annotate it with the @Test annotation.

This method executes the code under test. . .

. . . assert methods, provided by JUnit or another assert framework, can
be used to check an expected result versus the actual result.

You should provide meaningful messages in assert statements. That makes
it easier for the user to identify and fix the problem.

Prof. Michele Loreti Testing 459 / 501

JUnit. . .

JUnit is a test framework which uses annotations to identify methods that
specify a test. JUnit is an open source project hosted at Github.

A JUnit test is a method contained in a class which is only used for
testing. This is called a Test class. To define that a certain method is a
test method, annotate it with the @Test annotation.

This method executes the code under test. . .

. . . assert methods, provided by JUnit or another assert framework, can
be used to check an expected result versus the actual result.

You should provide meaningful messages in assert statements. That makes
it easier for the user to identify and fix the problem.

Prof. Michele Loreti Testing 459 / 501

JUnit. . .

JUnit is a test framework which uses annotations to identify methods that
specify a test. JUnit is an open source project hosted at Github.

A JUnit test is a method contained in a class which is only used for
testing. This is called a Test class. To define that a certain method is a
test method, annotate it with the @Test annotation.

This method executes the code under test. . .

. . . assert methods, provided by JUnit or another assert framework, can
be used to check an expected result versus the actual result.

You should provide meaningful messages in assert statements. That makes
it easier for the user to identify and fix the problem.

Prof. Michele Loreti Testing 459 / 501

JUnit. . .

JUnit is a test framework which uses annotations to identify methods that
specify a test. JUnit is an open source project hosted at Github.

A JUnit test is a method contained in a class which is only used for
testing. This is called a Test class. To define that a certain method is a
test method, annotate it with the @Test annotation.

This method executes the code under test. . .

. . . assert methods, provided by JUnit or another assert framework, can
be used to check an expected result versus the actual result.

You should provide meaningful messages in assert statements. That makes
it easier for the user to identify and fix the problem.

Prof. Michele Loreti Testing 459 / 501

JUnit: Example

package i t . unicam . c s . pa . b a t t l e s h i p 1 9 ;

impor t s t a t i c org . j u n i t . j u p i t e r . a p i . A s s e r t i o n s . ∗ ;
impor t org . j u n i t . j u p i t e r . a p i . Test ;

c l a s s Ma t r i xB a t t l e F i e l dT e s t {
@Test
vo i d shou l dBeVa l i d () {

i n t s i z e = 10 ;
Ma t r i x B a t t l e F i e l d f i e l d = new Ma t r i x B a t t l e F i e l d (s i z e) ;
f o r (i n t i=0 ; i<s i z e ; i++) {

f o r (i n t j=0 ; j<s i z e ; j++) {
a s s e r tT r u e (f i e l d . i s V a l i d (new Loca t i on (i , j))) ;

}
}

}
}

Prof. Michele Loreti Testing 460 / 501

Naming conventions. . .

There are several potential naming conventions for JUnit tests. A
widely-used solution for classes is to use the “Test” suffix at the end of
test classes names.

As a general rule, a test name should explain what the test does. If that is
done correctly, reading the actual implementation can be avoided.

One possible convention is to use the should in the test method name. For
example:

� ordersShouldBeCreated

� menuShouldGetActive

Prof. Michele Loreti Testing 461 / 501

Naming conventions. . .

There are several potential naming conventions for JUnit tests. A
widely-used solution for classes is to use the “Test” suffix at the end of
test classes names.

As a general rule, a test name should explain what the test does. If that is
done correctly, reading the actual implementation can be avoided.

One possible convention is to use the should in the test method name. For
example:

� ordersShouldBeCreated

� menuShouldGetActive

Prof. Michele Loreti Testing 461 / 501

Naming conventions. . .

There are several potential naming conventions for JUnit tests. A
widely-used solution for classes is to use the “Test” suffix at the end of
test classes names.

As a general rule, a test name should explain what the test does. If that is
done correctly, reading the actual implementation can be avoided.

One possible convention is to use the should in the test method name. For
example:

� ordersShouldBeCreated

� menuShouldGetActive

Prof. Michele Loreti Testing 461 / 501

JUnit 5. . .

JUnit 5 is the latest major release of JUnit.

JUnit 5 consists of a number of discrete components:

� JUnit Platform: foundation layer which enables different testing
frameworks to be launched on the JVM.

� Junit Jupiter: is the JUnit 5 test framework which is launched by
JUnit Platform.

� JUnit Vintage: legacy TestEngine which runs older tests.

Prof. Michele Loreti Testing 462 / 501

JUnit 5. . .

JUnit 5 is the latest major release of JUnit.

JUnit 5 consists of a number of discrete components:

� JUnit Platform: foundation layer which enables different testing
frameworks to be launched on the JVM.

� Junit Jupiter: is the JUnit 5 test framework which is launched by
JUnit Platform.

� JUnit Vintage: legacy TestEngine which runs older tests.

Prof. Michele Loreti Testing 462 / 501

JUnit 5. . .

JUnit 5 is the latest major release of JUnit.

JUnit 5 consists of a number of discrete components:

� JUnit Platform: foundation layer which enables different testing
frameworks to be launched on the JVM.

� Junit Jupiter: is the JUnit 5 test framework which is launched by
JUnit Platform.

� JUnit Vintage: legacy TestEngine which runs older tests.

Prof. Michele Loreti Testing 462 / 501

JUnit 5. . .

JUnit 5 is the latest major release of JUnit.

JUnit 5 consists of a number of discrete components:

� JUnit Platform: foundation layer which enables different testing
frameworks to be launched on the JVM.

� Junit Jupiter: is the JUnit 5 test framework which is launched by
JUnit Platform.

� JUnit Vintage: legacy TestEngine which runs older tests.

Prof. Michele Loreti Testing 462 / 501

Defining test methods

JUnit uses annotations to mark methods as test methods and to configure
them:

� @Test, Identifies a method as a test method.

� @RepeatedTest(n), Repeats the test a n times.

� @BeforeEach, Executed before each test. It is used to prepare the test
environment (e.g., read input data, initialise the class).

� @AfterEach, Executed after each test. It is used to cleanup the test
environment (e.g., delete temporary data, restore defaults). It can
also save memory by cleaning up expensive memory structures.

� @BeforeAll, Executed once, before the start of all tests. It is used to
perform time intensive activities, for example, to connect to a
database. Methods marked with this annotation need to be defined as
static to work with JUnit.

� . . .

Prof. Michele Loreti Testing 463 / 501

Defining test methods

JUnit uses annotations to mark methods as test methods and to configure
them:

� @Test, Identifies a method as a test method.

� @RepeatedTest(n), Repeats the test a n times.

� @BeforeEach, Executed before each test. It is used to prepare the test
environment (e.g., read input data, initialise the class).

� @AfterEach, Executed after each test. It is used to cleanup the test
environment (e.g., delete temporary data, restore defaults). It can
also save memory by cleaning up expensive memory structures.

� @BeforeAll, Executed once, before the start of all tests. It is used to
perform time intensive activities, for example, to connect to a
database. Methods marked with this annotation need to be defined as
static to work with JUnit.

� . . .

Prof. Michele Loreti Testing 463 / 501

Defining test methods

JUnit uses annotations to mark methods as test methods and to configure
them:

� @Test, Identifies a method as a test method.

� @RepeatedTest(n), Repeats the test a n times.

� @BeforeEach, Executed before each test. It is used to prepare the test
environment (e.g., read input data, initialise the class).

� @AfterEach, Executed after each test. It is used to cleanup the test
environment (e.g., delete temporary data, restore defaults). It can
also save memory by cleaning up expensive memory structures.

� @BeforeAll, Executed once, before the start of all tests. It is used to
perform time intensive activities, for example, to connect to a
database. Methods marked with this annotation need to be defined as
static to work with JUnit.

� . . .

Prof. Michele Loreti Testing 463 / 501

Defining test methods

JUnit uses annotations to mark methods as test methods and to configure
them:

� @Test, Identifies a method as a test method.

� @RepeatedTest(n), Repeats the test a n times.

� @BeforeEach, Executed before each test. It is used to prepare the test
environment (e.g., read input data, initialise the class).

� @AfterEach, Executed after each test. It is used to cleanup the test
environment (e.g., delete temporary data, restore defaults). It can
also save memory by cleaning up expensive memory structures.

� @BeforeAll, Executed once, before the start of all tests. It is used to
perform time intensive activities, for example, to connect to a
database. Methods marked with this annotation need to be defined as
static to work with JUnit.

� . . .

Prof. Michele Loreti Testing 463 / 501

Defining test methods

JUnit uses annotations to mark methods as test methods and to configure
them:

� @Test, Identifies a method as a test method.

� @RepeatedTest(n), Repeats the test a n times.

� @BeforeEach, Executed before each test. It is used to prepare the test
environment (e.g., read input data, initialise the class).

� @AfterEach, Executed after each test. It is used to cleanup the test
environment (e.g., delete temporary data, restore defaults). It can
also save memory by cleaning up expensive memory structures.

� @BeforeAll, Executed once, before the start of all tests. It is used to
perform time intensive activities, for example, to connect to a
database. Methods marked with this annotation need to be defined as
static to work with JUnit.

� . . .

Prof. Michele Loreti Testing 463 / 501

Defining test methods

JUnit uses annotations to mark methods as test methods and to configure
them:

� @Test, Identifies a method as a test method.

� @RepeatedTest(n), Repeats the test a n times.

� @BeforeEach, Executed before each test. It is used to prepare the test
environment (e.g., read input data, initialise the class).

� @AfterEach, Executed after each test. It is used to cleanup the test
environment (e.g., delete temporary data, restore defaults). It can
also save memory by cleaning up expensive memory structures.

� @BeforeAll, Executed once, before the start of all tests. It is used to
perform time intensive activities, for example, to connect to a
database. Methods marked with this annotation need to be defined as
static to work with JUnit.

� . . .

Prof. Michele Loreti Testing 463 / 501

Defining test methods

� . . .
� @AfterAll, Executed once, after all tests have been finished. It is used

to perform clean-up activities, for example, to disconnect from a
database. Methods annotated with this annotation need to be defined
as static to work with JUnit.

� @Tag(”<TagName>”), Tests in JUnit 5 can be filtered by tag. Eg., run
only tests with a specific tag.

� @Disabled or @Disabled(”Why disabled”), Marks that the test should be
disabled. This is useful when the underlying code has been changed
and the test case has not yet been adapted. Or if the execution time
of this test is too long to be included. It is best practice to provide
the optional description, why the test is disabled.

� @DisplayName(”<Name>”), <Name> that will be displayed by the test
runner. In contrast to method names the DisplayName can contain
spaces.

Prof. Michele Loreti Testing 464 / 501

Test Suites. . .

To run multiple tests together, you can use test suites. They allow to
aggregate multiple test classes. JUnit 5 provides two annotations:

� @SelectPackages, used to specify the names of packages for the test
suite:

@RunWith (JUn i tP l a t f o rm . c l a s s)
@Se l ec tPackages (” i t . unicam . c s . pa . b a t t l e s h i p 1 9 . t e s t s ”)
p u b l i c c l a s s A l l T e s t s {}

� @SelectClasses, used to specify the classes for the test suite. They can
be located in different packages.

@RunWith (JUn i tP l a t f o rm . c l a s s)
@S e l e c tC l a s s e s ({ As s e r t i o nTe s t . c l a s s , Assumpt ionTest . c l a s s

, Excep t i onTes t . c l a s s })
p u b l i c c l a s s A l l T e s t s {}

Prof. Michele Loreti Testing 465 / 501

Test Suites. . .

To run multiple tests together, you can use test suites. They allow to
aggregate multiple test classes. JUnit 5 provides two annotations:

� @SelectPackages, used to specify the names of packages for the test
suite:

@RunWith (JUn i tP l a t f o rm . c l a s s)
@Se l ec tPackages (” i t . unicam . c s . pa . b a t t l e s h i p 1 9 . t e s t s ”)
p u b l i c c l a s s A l l T e s t s {}

� @SelectClasses, used to specify the classes for the test suite. They can
be located in different packages.

@RunWith (JUn i tP l a t f o rm . c l a s s)
@S e l e c tC l a s s e s ({ As s e r t i o nTe s t . c l a s s , Assumpt ionTest . c l a s s

, Excep t i onTes t . c l a s s })
p u b l i c c l a s s A l l T e s t s {}

Prof. Michele Loreti Testing 465 / 501

Test Suites. . .

To run multiple tests together, you can use test suites. They allow to
aggregate multiple test classes. JUnit 5 provides two annotations:

� @SelectPackages, used to specify the names of packages for the test
suite:

@RunWith (JUn i tP l a t f o rm . c l a s s)
@Se l ec tPackages (” i t . unicam . c s . pa . b a t t l e s h i p 1 9 . t e s t s ”)
p u b l i c c l a s s A l l T e s t s {}

� @SelectClasses, used to specify the classes for the test suite. They can
be located in different packages.

@RunWith (JUn i tP l a t f o rm . c l a s s)
@S e l e c tC l a s s e s ({ As s e r t i o nTe s t . c l a s s , Assumpt ionTest . c l a s s

, Excep t i onTes t . c l a s s })
p u b l i c c l a s s A l l T e s t s {}

Prof. Michele Loreti Testing 465 / 501

Expecting Exceptions

Exception is handling with org. junit . jupiter . api . Assertions .expectThrows().
You define the expected Exception class and provide code that should
throw the exception:

@Test
vo i d shou ldThrowExcept ion () {

i n t s i z e = 10 ;
B a t t l e F i e l d f i e l d = new Ma t r i x B a t t l e F i e l d (s i z e) ;
I l l e g a l L a u n c hE x c e p t i o n e x c e p t i o n = as se r tTh rows (
I l l e g a l L a u n c hE x c e p t i o n . c l a s s , () −> f i e l d . l aunch (new
Loca t i on (s i z e +1, s i z e +1))) ;
a s s e r t E q u a l s (” I l l e g a l l o c a t i o n ” , e x c e p t i o n . getMessage ()) ;

}

Prof. Michele Loreti Testing 466 / 501

Timeout tests

If you want to ensure that a test fails if it isnt done in a certain amount of
time you can use the assertTimeout() method:

@Test
vo i d t imeoutNotExceeded () {

a s s e r tT imeou t (o fMinute s (1) , () −> s e r v i c e . doBackup ()) ;
}

Prof. Michele Loreti Testing 467 / 501

Timeout tests

If you want to ensure that a test fails if it isnt done in a certain amount of
time you can use the assertTimeout() method:

@Test
vo i d t imeoutNotExceeded () {

a s s e r tT imeou t (o fMinute s (1) , () −> s e r v i c e . doBackup ()) ;
}

Prof. Michele Loreti Testing 467 / 501

JUnit references. . .

https://junit.org/junit5/

https://junit.org/junit5/docs/current/user-guide/

Prof. Michele Loreti Testing 468 / 501

https://junit.org/junit5/

To be continued. . .

Prof. Michele Loreti Testing 469 / 501

