Exercises: Funcitonal Programming in Action

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti . . L i 52 / 425
Exercises: Funcitonal Programming in Action

Excercise 1. Computing GCD. ..

The greatest common divisor (gcd) of two or more integers, which are not
all zero, is the largest positive integer that divides each of the integers.

Prof. Michele Loreti . . o i 53 / 425
Exercises: Funcitonal Programming in Action

Excercise 1. Computing GCD. ..

The greatest common divisor (gcd) of two or more integers, which are not
all zero, is the largest positive integer that divides each of the integers.

Euclidean Algorithm: Given two integers a and b. ..
1. Compute the sequence of numbers a;, b; such that:

fa (i=0) (b (i =0)
""‘{b,_l (i >0) bi_{a;_l mod bi_y (i >0)

2. gcd(a, b) = aj, where i is the least index such that b; = 0.

53 / 425

Prof. Michele Loreti . . P .
Exercises: Funcitonal Programming in Action

Excercise 1. Computing GCD. ..

GCD of two integers:

let rec gcd2 a b =
if b=0 then a
else ged2 b (a%b)

Prof. Michele Loreti . . o i 54 / 425
Exercises: Funcitonal Programming in Action

Excercise 1. Computing GCD. ..

GCD of two integers:

let rec gcd2 a b =
if b=0 then a
else ged2 b (a%b)

GCD of a list of integers

Prof. Michele Loreti . . o i 54 / 425
Exercises: Funcitonal Programming in Action

Excercise 1. Computing GCD. ..

GCD of two integers:

let rec gcd2 a b =
if b=0 then a
else ged2 b (a%b)

GCD of a list of integers (solution 1):

let rec gcd alist =
match alist with
[] — None
| a::tail —
match gcd tail with
None —> Some a
| Some b —> Some (gcd2 a b)

Prof. Michele Loreti . . o i 54 / 425
Exercises: Funcitonal Programming in Action

Excercise 1. Computing GCD. ..

GCD of two integers:

let rec gcd2 a b =
if b=0 then a
else ged2 b (a%b)

GCD of a list of integers (solution 1):

let rec gcd alist =
match alist with
[] — None
| a::tail —
match gcd tail with
None —> Some a
| Some b —> Some (gcd2 a b)

GCD of a list of integers (solution 2):

Prof. Michele Loreti . . o i 54 / 425
Exercises: Funcitonal Programming in Action

Excercise 1. Computing GCD. ..

GCD of two integers:

let rec gcd2 a b =
if b=0 then a
else ged2 b (a%b)

GCD of a list of integers (solution 1):

let rec gcd alist =
match alist with
[] — None
| a::tail —
match gcd tail with
None —> Some a
| Some b —> Some (gcd2 a b)

GCD of a list of integers (solution 2):

let gcdlist alist =
List.reduce gcd2 alist

Prof. Michele Loreti . . o i 54 / 425
Exercises: Funcitonal Programming in Action

Excercise 2: Prime numbers. ..

Given a number n checks if its prime. A number n is prime if and only if it
can be divided by 1 and itself.

Prof. Michele Loreti . . o i 55 / 425
Exercises: Funcitonal Programming in Action

Excercise 2: Prime numbers. ..

Given a number n checks if its prime. A number n is prime if and only if it
can be divided by 1 and itself. If n is not prime, at least a divisor of n is

between 1 and +/n.

Prof. Michele Loreti . . o i 55 / 425
Exercises: Funcitonal Programming in Action

Excercise 2: Prime numbers. ..

Given a number n checks if its prime. A number n is prime if and only if it
can be divided by 1 and itself. If n is not prime, at least a divisor of n is
between 1 and +/n.

Solution 1:

let isPrime n =
let rec _isPrime n v =
if v=1 then true
else if n%v=0 then false
else _isPrime n (v—1)
in _isPrime n (int (sqrt (float n)))

Prof. Michele Loreti . . o i 55 / 425
Exercises: Funcitonal Programming in Action

Excercise 2: Prime numbers. ..

Given a number n checks if its prime. A number n is prime if and only if it
can be divided by 1 and itself. If n is not prime, at least a divisor of n is
between 1 and +/n.

Solution 1:

let isPrime n =
let rec _isPrime n v =
if v=1 then true
else if n%v=0 then false
else _isPrime n (v—1)
in _isPrime n (int (sqrt (float n)))

Solution 2:

let isPrime2 n =
(n>1) && (not (List.exists
(fun i — n%i=0) [2 .. (int (sqrt (float n)))]))

Prof. Michele Loreti . . o i 55 / 425
Exercises: Funcitonal Programming in Action

Excercise 3: Prime factors. ..

Compute the list of prime factors of an integer n (1 and n excluded).

Prof. Michele Loreti . . o i 56 / 425
Exercises: Funcitonal Programming in Action

Excercise 3: Prime factors. .. '

Compute the list of prime factors of an integer n (1 and n excluded).

Solution:

let primeFactors n =
List. filter

(fun i — n%i

(List.filter

0)

isPrime [2 .. n—1])

Prof. Michele Loreti

Exercises: Funcitonal Programming in Action

56 / 425

Example Binary Search Trees

Binary search trees keep their keys in sorted order, so that lookup and
other operations can use the principle of binary search. ..

when looking for a key in a tree (or a place to insert a new key), they
traverse the tree from root to leaf;

making comparisons to keys stored in the nodes of the tree and

deciding, on the basis of the comparison, to continue searching in the
left or right subtrees.

Prof. Michele Loreti . . L i 57 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees

Binary search trees keep their keys in sorted order, so that lookup and
other operations can use the principle of binary search. ..

when looking for a key in a tree (or a place to insert a new key), they
traverse the tree from root to leaf;

making comparisons to keys stored in the nodes of the tree and

deciding, on the basis of the comparison, to continue searching in the
left or right subtrees.

We can use an enumeration to define the set of Binary Search Trees:

type bstree <'T when 'T:comparison> =
EMPTY

| BSTREE of value: 'T *x left: 'T bstree % right: 'T bstree

Prof. Michele Loreti . . L i 57 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

Prof. Michele Loreti . . o i 58 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)

Prof. Michele Loreti . . o i 58 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)

Check if an element is in the tree:

Prof. Michele Loreti . . o i 58 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)

Check if an element is in the tree:

let rec contains v t =
match t with
EMPTY —> false
| BSTREE(vl,_,_) when vl = v —> true
| BSTREE(v1,!,_) when v<vl —> contains v |
| BSTREE(vl,_,r) —> contains v r

Prof. Michele Loreti . . o i 58 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

Prof. Michele Loreti . . o i 59 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

let rec getMin t =
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,_) —> Some vl
| BSTREE(vl,tl,_) —> getMin tl

Prof. Michele Loreti

59 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

let rec getMin t =
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,_) —> Some vl
| BSTREE(vl,tl,_) —> getMin tl

Get max element in the tree:

Prof. Michele Loreti

59 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees

Operations on trees (2/7)

Get min element in the tree:

let rec getMin t
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,)

| BSTREE(v1, tl,_.) —>

Get max element in the tree:

let

rec getMax t
match t with
EMPTY —> None
| BSTREE(v1, _ ,EMPTY)
| BSTREE(vl,_,tl) —>

Prof. Michele Loreti

—> Some vl
getMin tl

—> Some vl
getMax tl

59 / 425

Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

Prof. Michele Loreti . . o i 60 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with
EMPTY —> 0

| BSTREE(-,I,r) — 1+(size |)+(size r)

Prof. Michele Loreti

60 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with
EMPTY —> 0

| BSTREE(-,I,r) — 1+(size |)+(size r)

Height of the tree:

Prof. Michele Loreti

60 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees '

Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with
EMPTY —> 0

| BSTREE(-,I,r) — 1+(size |)+(size r)

Height of the tree:

match t with
EMPTY — 0

| BSTREE(-,l,r) — 14+(max (height

let rec height t =

) (height r))

Prof. Michele Loreti . . o i 60 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (4/7)

Ordered list of elements in the tree:

Prof. Michele Loreti . . L i 61 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (4/7)

Ordered list of elements in the tree:

let rec listOf t =
match t with
EMPTY —> []
| BSTREE(v1,!l,r) —> (listOf 1)@(vl::(listOf r))

Prof. Michele Loreti . . L i 61 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (5/7)

Balance a tree:

Prof. Michele Loreti . . L i 62 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (5/7)

Balance a tree:

let balance t =
let rec _fromOrderedList Ist =
match Ist with

[] —> EMPTY

| [v] = BSTREE(v,EMPTY,EMPTY)

| - —
let 11,12 = List.splitAt (Ist.Length/2) Ist
in

match 12 with
[] = -fromOrderedList 11
| vi:tail —
BSTREE(v,
(-fromOrderedList 11),
(-fromOrderedList tail))

_fromOrderedList (listOf t)

Prof. Michele Loreti . . L i 62 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (6/7)

Filtering elements:

Prof. Michele Loreti . . o i 63 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (6/7)

Filtering elements:

let rec getAllLessThan v t =

match t with

| EMPTY —> EMPTY

| BSTREE(v1,|,r) when vi<v —> BSTREE(v1,|,
getAllLessThan v r)

| BSTREE(v1l,!,r) —> getAllLessThan v |

let rec getAllGreaterThan v t =
match t with
| EMPTY —> EMPTY
| BSTREE(vl,!|,r) when vli<v —> getAllGreaterThan v r
| BSTREE(v1l,l,r) —> BSTREE(vl, getAllGreaterThan v | ,r

Prof. Michele Loreti . . o i 63 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (7/7)

Merging two trees:

Prof. Michele Loreti . . o i 64 / 425
Exercises: Funcitonal Programming in Action

Example Binary Search Trees
Operations on trees (7/7)

Merging two trees:

let rec merge tl t2 =
match tl,t2 with
| EMPTY, . —> t2
| - EMPTY — t1
| BSTREE(v1,11,r1),BSTREE(v2,12,r2) when vli<v2 —>
let 111 = getAllLessThan v2 rl
let 112 = getAllGreaterThan v2 rl
let 121 = getAllLessThan vl 12
let 122 = getAllGreaterThan vl 12
BSTREE(v2, BSTREE(vl, merge I1 121 ,merge 111 121),
merge 112 r2)
| BSTREE(v1,I1,r1),BSTREE(v2,12,r2) —> //vl >= v2
let 111 = getAllLessThan v2 rl
let 112 = getAllGreaterThan v2 rl
let 121 = getAllLessThan vl 12
let 122 = getAllGreaterThan vl [2
BSTREE(v1 ,BSTREE(v2,12 ,merge 111 121),merge 112 rl)

Prof. Michele Loreti . . o i 64 / 425
Exercises: Funcitonal Programming in Action

Concluding remarks. . .

What we learnt...

Prof. Michele Loreti . . o i 65 / 425
Exercises: Funcitonal Programming in Action

Concluding remarks. . .

What we learnt...

1. Type, type inference and type checking;

What we are able to do now...

Prof. Michele Loreti . . o i 65 / 425
Exercises: Funcitonal Programming in Action

Concluding remarks. . .

What we learnt. ..
1. Type, type inference and type checking;

2. Generic types and constraints;

What we are able to do now...

Prof. Michele Loreti . . o i 65 / 425
Exercises: Funcitonal Programming in Action

Concluding remarks. . .

What we learnt. ..
1. Type, type inference and type checking;
2. Generic types and constraints;

3. Functions are first order data;

What we are able to do now...

Prof. Michele Loreti . . o i 65 / 425
Exercises: Funcitonal Programming in Action

Concluding remarks. . .

What we learnt. ..
1. Type, type inference and type checking;
2. Generic types and constraints;
3. Functions are first order data;
4

. Programming with pattern matching;

What we are able to do now...

Prof. Michele Loreti . . o i 65 / 425
Exercises: Funcitonal Programming in Action

Concluding remarks. . .

What we learnt. ..

Type, type inference and type checking;
Generic types and constraints;
Functions are first order data;

Programming with pattern matching;

SANESIIL A .

Filter-map-reduce as a pattern for handling collections of data.

What we are able to do now...

Prof. Michele Loreti . . o i 65 / 425
Exercises: Funcitonal Programming in Action

Concluding remarks. . .

What we learnt. ..

Type, type inference and type checking;
Generic types and constraints;
Functions are first order data;

Programming with pattern matching;

SANESIIL A .

Filter-map-reduce as a pattern for handling collections of data.

What we are able to do now...

1. Infer types of simple expressions/programs;

Prof. Michele Loreti . . o i 65 / 425
Exercises: Funcitonal Programming in Action

Concluding remarks. . .

What we learnt. ..

Type, type inference and type checking;
Generic types and constraints;
Functions are first order data;

Programming with pattern matching;

SANESIIL A .

Filter-map-reduce as a pattern for handling collections of data.

What we are able to do now...

1. Infer types of simple expressions/programs;
2. Understand F# code;

Prof. Michele Loreti . . o i 65 / 425
Exercises: Funcitonal Programming in Action

Concluding remarks. . .

What we learnt. ..

Type, type inference and type checking;
Generic types and constraints;
Functions are first order data;

Programming with pattern matching;

SANESIIL A .

Filter-map-reduce as a pattern for handling collections of data.

What we are able to do now. ..
1. Infer types of simple expressions/programs;
2. Understand F# code;

3. Write simple F# functions implementing simple algorithms;

Prof. Michele Loreti . . o i 65 / 425
Exercises: Funcitonal Programming in Action

Concluding remarks. . .

What we learnt. ..

Type, type inference and type checking;
Generic types and constraints;
Functions are first order data;

Programming with pattern matching;

SANESIIL A .

Filter-map-reduce as a pattern for handling collections of data.

What we are able to do now. ..
Infer types of simple expressions/programs;
Understand F# code;

Write simple F# functions implementing simple algorithms;

el A

Apply filter-map-reduce patter.

Prof. Michele Loreti . . o i 65 / 425
Exercises: Funcitonal Programming in Action

To be continued. ..

Prof. Michele Loreti . . o i 66 / 425
Exercises: Funcitonal Programming in Action

