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Excercise 1. Computing GCD. ..

The greatest common divisor (gcd) of two or more integers, which are not
all zero, is the largest positive integer that divides each of the integers.
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Excercise 1. Computing GCD. ..

The greatest common divisor (gcd) of two or more integers, which are not
all zero, is the largest positive integer that divides each of the integers.

Euclidean Algorithm: Given two integers a and b. ..
1. Compute the sequence of numbers a;, b; such that:

fa (i=0) (b (i =0)
""‘{b,_l (i >0) bi_{a;_l mod bi_y (i >0)

2. gcd(a, b) = aj, where i is the least index such that b; = 0.
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Excercise 1. Computing GCD. ..

GCD of two integers:

let rec gcd2 a b =
if b=0 then a
else ged2 b (a%b)
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let rec gcd2 a b =
if b=0 then a
else ged2 b (a%b)
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Excercise 1. Computing GCD. ..

GCD of two integers:

let rec gcd2 a b =
if b=0 then a
else ged2 b (a%b)

GCD of a list of integers (solution 1):

let rec gcd alist =
match alist with
[] — None
| a::tail —
match gcd tail with
None —> Some a
| Some b —> Some (gcd2 a b)
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Excercise 1. Computing GCD. ..

GCD of two integers:

let rec gcd2 a b =
if b=0 then a
else ged2 b (a%b)

GCD of a list of integers (solution 1):

let rec gcd alist =
match alist with
[] — None
| a::tail —
match gcd tail with
None —> Some a
| Some b —> Some (gcd2 a b)

GCD of a list of integers (solution 2):

let gcdlist alist =
List.reduce gcd2 alist
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Excercise 2: Prime numbers. ..

Given a number n checks if its prime. A number n is prime if and only if it
can be divided by 1 and itself.
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Excercise 2: Prime numbers. ..

Given a number n checks if its prime. A number n is prime if and only if it
can be divided by 1 and itself. If n is not prime, at least a divisor of n is

between 1 and +/n.
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Excercise 2: Prime numbers. ..

Given a number n checks if its prime. A number n is prime if and only if it
can be divided by 1 and itself. If n is not prime, at least a divisor of n is
between 1 and +/n.

Solution 1:

let isPrime n =
let rec _isPrime n v =
if v=1 then true
else if n%v=0 then false
else _isPrime n (v—1)
in _isPrime n (int (sqrt (float n)))
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Excercise 2: Prime numbers. ..

Given a number n checks if its prime. A number n is prime if and only if it
can be divided by 1 and itself. If n is not prime, at least a divisor of n is
between 1 and +/n.

Solution 1:

let isPrime n =
let rec _isPrime n v =
if v=1 then true
else if n%v=0 then false
else _isPrime n (v—1)
in _isPrime n (int (sqrt (float n)))

Solution 2:

let isPrime2 n =
(n>1) && (not (List.exists
(fun i — n%i=0) [ 2 .. (int (sqrt (float n)))]))
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Excercise 3: Prime factors. ..

Compute the list of prime factors of an integer n (1 and n excluded).
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Excercise 3: Prime factors. .. '

Compute the list of prime factors of an integer n (1 and n excluded).

Solution:

let primeFactors n =
List. filter

(fun i — n%i

(List.filter

0)

isPrime [2 .. n—1])
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Example Binary Search Trees

Binary search trees keep their keys in sorted order, so that lookup and
other operations can use the principle of binary search. ..

when looking for a key in a tree (or a place to insert a new key), they
traverse the tree from root to leaf;

making comparisons to keys stored in the nodes of the tree and

deciding, on the basis of the comparison, to continue searching in the
left or right subtrees.

Prof. Michele Loreti . . L i 57 / 425
Exercises: Funcitonal Programming in Action



Example Binary Search Trees

Binary search trees keep their keys in sorted order, so that lookup and
other operations can use the principle of binary search. ..

when looking for a key in a tree (or a place to insert a new key), they
traverse the tree from root to leaf;

making comparisons to keys stored in the nodes of the tree and

deciding, on the basis of the comparison, to continue searching in the
left or right subtrees.

We can use an enumeration to define the set of Binary Search Trees:

type bstree <'T when 'T:comparison> =
EMPTY

| BSTREE of value: 'T *x left: 'T bstree % right: 'T bstree
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Example Binary Search Trees
Operations on trees (1/7)

Adding an element:
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Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)
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Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)

Check if an element is in the tree:
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Example Binary Search Trees
Operations on trees (1/7)

Adding an element:

let rec add v t =
match t with
EMPTY —> BSTREE(v,EMPTY,EMPTY)
| BSTREE(v1l,!,r) when v<vl —> BSTREE(vl,add v I|,r)
| BSTREE(vl,!|,r) — BSTREE(vl,|,add v r)

Check if an element is in the tree:

let rec contains v t =
match t with
EMPTY —> false
| BSTREE(vl,_,_) when vl = v —> true
| BSTREE(v1,!,_) when v<vl —> contains v |
| BSTREE(vl,_,r) —> contains v r
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Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:
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Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

let rec getMin t =
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,_) —> Some vl
| BSTREE(vl,tl,_) —> getMin tl
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Example Binary Search Trees
Operations on trees (2/7)

Get min element in the tree:

let rec getMin t =
match t with
EMPTY —> None
| BSTREE(v1,EMPTY,_) —> Some vl
| BSTREE(vl,tl,_) —> getMin tl

Get max element in the tree:
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Example Binary Search Trees

Operations on trees (2/7)

Get min element in the tree:

let rec getMin t
match t with
EMPTY —> None
| BSTREE(v1,EMPTY, )

| BSTREE(v1, tl,_.) —>

Get max element in the tree:

let

rec getMax t
match t with
EMPTY —> None
| BSTREE(v1, _ ,EMPTY)
| BSTREE(vl,_,tl) —>

Prof. Michele Loreti

—> Some vl
getMin tl

—> Some vl
getMax tl
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Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:
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Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with
EMPTY —> 0

| BSTREE(-,I,r) — 1+(size |)+(size r)
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Example Binary Search Trees
Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with
EMPTY —> 0

| BSTREE(-,I,r) — 1+(size |)+(size r)

Height of the tree:
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Example Binary Search Trees '

Operations on trees (3/7)

Number of elements in the tree:

let rec size t =
match t with
EMPTY —> 0

| BSTREE(-,I,r) — 1+(size |)+(size r)

Height of the tree:

match t with
EMPTY — 0

| BSTREE(-,l,r) — 14+(max (height

let rec height t =

) (height r))
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Example Binary Search Trees
Operations on trees (4/7)

Ordered list of elements in the tree:
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Example Binary Search Trees
Operations on trees (4/7)

Ordered list of elements in the tree:

let rec listOf t =
match t with
EMPTY —> []
| BSTREE(v1,!l,r) —> (listOf 1)@(vl::(listOf r))
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Example Binary Search Trees
Operations on trees (5/7)

Balance a tree:
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Example Binary Search Trees
Operations on trees (5/7)

Balance a tree:

let balance t =
let rec _fromOrderedList Ist =
match Ist with

[] —> EMPTY

| [ v ] = BSTREE(v,EMPTY,EMPTY)

| - —
let 11,12 = List.splitAt (Ist.Length/2) Ist
in

match 12 with
[] = -fromOrderedList 11
| vi:tail —
BSTREE(v,
(-fromOrderedList 11),
(-fromOrderedList tail) )

_fromOrderedList (listOf t)
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Example Binary Search Trees
Operations on trees (6/7)

Filtering elements:
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Example Binary Search Trees
Operations on trees (6/7)

Filtering elements:

let rec getAllLessThan v t =

match t with

| EMPTY —> EMPTY

| BSTREE(v1,|,r) when vi<v —> BSTREE(v1,|,
getAllLessThan v r)

| BSTREE(v1l,!,r) —> getAllLessThan v |

let rec getAllGreaterThan v t =
match t with
| EMPTY —> EMPTY
| BSTREE(vl,!|,r) when vli<v —> getAllGreaterThan v r
| BSTREE(v1l,l,r) —> BSTREE(vl, getAllGreaterThan v | ,r
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Example Binary Search Trees
Operations on trees (7/7)

Merging two trees:

Prof. Michele Loreti . . o i 64 / 425
Exercises: Funcitonal Programming in Action



Example Binary Search Trees
Operations on trees (7/7)

Merging two trees:

let rec merge tl t2 =
match tl,t2 with
| EMPTY, . —> t2
| - EMPTY — t1
| BSTREE(v1,11,r1),BSTREE(v2,12,r2) when vli<v2 —>
let 111 = getAllLessThan v2 rl
let 112 = getAllGreaterThan v2 rl
let 121 = getAllLessThan vl 12
let 122 = getAllGreaterThan vl 12
BSTREE(v2, BSTREE(vl, merge I1 121 ,merge 111 121),
merge 112 r2)
| BSTREE(v1,I1,r1),BSTREE(v2,12,r2) —> //vl >= v2
let 111 = getAllLessThan v2 rl
let 112 = getAllGreaterThan v2 rl
let 121 = getAllLessThan vl 12
let 122 = getAllGreaterThan vl [2
BSTREE(v1 ,BSTREE(v2,12 ,merge 111 121),merge 112 rl)
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Concluding remarks. . .

What we learnt...
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SANESIIL A .

Filter-map-reduce as a pattern for handling collections of data.
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Concluding remarks. . .

What we learnt. ..

Type, type inference and type checking;
Generic types and constraints;
Functions are first order data;

Programming with pattern matching;

SANESIIL A .

Filter-map-reduce as a pattern for handling collections of data.

What we are able to do now. ..
Infer types of simple expressions/programs;
Understand F# code;

Write simple F# functions implementing simple algorithms;

el A

Apply filter-map-reduce patter.
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To be continued. ..
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