
Object Oriented Programming

Prof. Michele Loreti

Programmazione Avanzata
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Object Oriented Programming 67 / 425

Working with Objects

In functional programming programs mainly rely on function calls.

Functions can be considered as black boxes:

� when we invoke a function we are interested in the result;

� data are separated from operations.

In Object Oriented programming you have another dimension:

� each object can have its own state;

� the state effect the result you get from calling a method.

Example: Let in be a Scanner object, if we call in .next() the object
remembers what was read before and gives us the next token.

Prof. Michele Loreti Object Oriented Programming 68 / 425

Working with Objects

In functional programming programs mainly rely on function calls.

Functions can be considered as black boxes:

� when we invoke a function we are interested in the result;

� data are separated from operations.

In Object Oriented programming you have another dimension:

� each object can have its own state;

� the state effect the result you get from calling a method.

Example: Let in be a Scanner object, if we call in .next() the object
remembers what was read before and gives us the next token.

Prof. Michele Loreti Object Oriented Programming 68 / 425

Working with Objects

In functional programming programs mainly rely on function calls.

Functions can be considered as black boxes:

� when we invoke a function we are interested in the result;

� data are separated from operations.

In Object Oriented programming you have another dimension:

� each object can have its own state;

� the state effect the result you get from calling a method.

Example: Let in be a Scanner object, if we call in .next() the object
remembers what was read before and gives us the next token.

Prof. Michele Loreti Object Oriented Programming 68 / 425

Working with Objects

In functional programming programs mainly rely on function calls.

Functions can be considered as black boxes:

� when we invoke a function we are interested in the result;

� data are separated from operations.

In Object Oriented programming you have another dimension:

� each object can have its own state;

� the state effect the result you get from calling a method.

Example: Let in be a Scanner object, if we call in .next() the object
remembers what was read before and gives us the next token.

Prof. Michele Loreti Object Oriented Programming 68 / 425

Working with Objects

In functional programming programs mainly rely on function calls.

Functions can be considered as black boxes:

� when we invoke a function we are interested in the result;

� data are separated from operations.

In Object Oriented programming you have another dimension:

� each object can have its own state;

� the state effect the result you get from calling a method.

Example: Let in be a Scanner object, if we call in .next() the object
remembers what was read before and gives us the next token.

Prof. Michele Loreti Object Oriented Programming 68 / 425

Working with Objects

In functional programming programs mainly rely on function calls.

Functions can be considered as black boxes:

� when we invoke a function we are interested in the result;

� data are separated from operations.

In Object Oriented programming you have another dimension:

� each object can have its own state;

� the state effect the result you get from calling a method.

Example: Let in be a Scanner object, if we call in .next() the object
remembers what was read before and gives us the next token.

Prof. Michele Loreti Object Oriented Programming 68 / 425

Working with Objects

In functional programming programs mainly rely on function calls.

Functions can be considered as black boxes:

� when we invoke a function we are interested in the result;

� data are separated from operations.

In Object Oriented programming you have another dimension:

� each object can have its own state;

� the state effect the result you get from calling a method.

Example: Let in be a Scanner object, if we call in .next() the object
remembers what was read before and gives us the next token.

Prof. Michele Loreti Object Oriented Programming 68 / 425

Working with Objects

In functional programming programs mainly rely on function calls.

Functions can be considered as black boxes:

� when we invoke a function we are interested in the result;

� data are separated from operations.

In Object Oriented programming you have another dimension:

� each object can have its own state;

� the state effect the result you get from calling a method.

Example: Let in be a Scanner object, if we call in .next() the object
remembers what was read before and gives us the next token.

Prof. Michele Loreti Object Oriented Programming 68 / 425

Working with Objects

In functional programming programs mainly rely on function calls.

Functions can be considered as black boxes:

� when we invoke a function we are interested in the result;

� data are separated from operations.

In Object Oriented programming you have another dimension:

� each object can have its own state;

� the state effect the result you get from calling a method.

Example: Let in be a Scanner object, if we call in .next() the object
remembers what was read before and gives us the next token.

Prof. Michele Loreti Object Oriented Programming 68 / 425

Working with Objects

In functional programming programs mainly rely on function calls.

Functions can be considered as black boxes:

� when we invoke a function we are interested in the result;

� data are separated from operations.

In Object Oriented programming you have another dimension:

� each object can have its own state;

� the state effect the result you get from calling a method.

Example: Let in be a Scanner object, if we call in .next() the object
remembers what was read before and gives us the next token.

Prof. Michele Loreti Object Oriented Programming 68 / 425

Working with Objects

When you use objects (that someone else implemented) and invoke
methods on them, you do not need to know what does under the hood.

This mechanism is named encapsulation. This is a key concept in object
oriented programming.

If we want to make available your code to other developers, we have to
make available your objects via classes.

Prof. Michele Loreti Object Oriented Programming 69 / 425

Working with Objects

When you use objects (that someone else implemented) and invoke
methods on them, you do not need to know what does under the hood.

This mechanism is named encapsulation. This is a key concept in object
oriented programming.

If we want to make available your code to other developers, we have to
make available your objects via classes.

Prof. Michele Loreti Object Oriented Programming 69 / 425

Working with Objects

When you use objects (that someone else implemented) and invoke
methods on them, you do not need to know what does under the hood.

This mechanism is named encapsulation. This is a key concept in object
oriented programming.

If we want to make available your code to other developers, we have to
make available your objects via classes.

Prof. Michele Loreti Object Oriented Programming 69 / 425

Example: Managing Calendars

Managing calendars is a common tasks. However it is not an easy work
since you have to manage:

� varying of months lenght;

� leap years;

� leap seconds!

Expert in the field can provide the classes that provides expected features:

� a class for managing the concept of date;

� implementing date arithmetics.

Prof. Michele Loreti Object Oriented Programming 70 / 425

Example: Managing Calendars

Managing calendars is a common tasks. However it is not an easy work
since you have to manage:

� varying of months lenght;

� leap years;

� leap seconds!

Expert in the field can provide the classes that provides expected features:

� a class for managing the concept of date;

� implementing date arithmetics.

Prof. Michele Loreti Object Oriented Programming 70 / 425

Example: Calendar application in Java

Implement an application that mimic the Unix cal program.

Micheles-MBP:~ loreti$ cal

March 2018

Su Mo Tu We Th Fr Sa

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

Prof. Michele Loreti Object Oriented Programming 71 / 425

Example: Calendar application in Java

Implement an application that mimic the Unix cal program.

Micheles-MBP:~ loreti$ cal

March 2018

Su Mo Tu We Th Fr Sa

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

Prof. Michele Loreti Object Oriented Programming 71 / 425

Example: Calendar application in Java

Question: How can we implement such program?

We can first use the LocalDate class to express a date at some unspecified
location.

We need an object of that class that represents the first day of the month:

Loca lDate d a t e = Loca lDate . now () . withDayOfMonth (1) ;

By invoking method date.plusDays(1) you can advance the date by 1 day.
The result is a new LocalDate object:

d a te = da t e . p l u s D a y s (1) ;

Prof. Michele Loreti Object Oriented Programming 72 / 425

Example: Calendar application in Java

Question: How can we implement such program?

We can first use the LocalDate class to express a date at some unspecified
location.

We need an object of that class that represents the first day of the month:

Loca lDate d a t e = Loca lDate . now () . withDayOfMonth (1) ;

By invoking method date.plusDays(1) you can advance the date by 1 day.
The result is a new LocalDate object:

d a te = da t e . p l u s D a y s (1) ;

Prof. Michele Loreti Object Oriented Programming 72 / 425

Example: Calendar application in Java

Question: How can we implement such program?

We can first use the LocalDate class to express a date at some unspecified
location.

We need an object of that class that represents the first day of the month:

Loca lDate d a t e = Loca lDate . now () . withDayOfMonth (1) ;

By invoking method date.plusDays(1) you can advance the date by 1 day.
The result is a new LocalDate object:

d a te = da t e . p l u s D a y s (1) ;

Prof. Michele Loreti Object Oriented Programming 72 / 425

Example: Calendar application in Java

Question: How can we implement such program?

We can first use the LocalDate class to express a date at some unspecified
location.

We need an object of that class that represents the first day of the month:

Loca lDate d a t e = Loca lDate . now () . withDayOfMonth (1) ;

By invoking method date.plusDays(1) you can advance the date by 1 day.
The result is a new LocalDate object:

d a te = da t e . p l u s D a y s (1) ;

Prof. Michele Loreti Object Oriented Programming 72 / 425

Example: Calendar application in Java

We can use this information to print the calendar:

i n t c o u n t e r = 1 ;
w h i l e (da t e . getMonthValue () == 3) {

i f (c o u n t e r == 8) {
System . out . p r i n t l n () ;
c o u n t e r = 1 ;

}
System . out . p r i n t f (”%4d” , d a t e . getDayOfMonth ()) ;
d a te = da t e . p l u s D a y s (1) ;
c o u n t e r ++;

}

Prof. Michele Loreti Object Oriented Programming 73 / 425

Example: Calendar application in Java

Method getDayOfWeek() can be used to get weekday on which the date fall:

DayOfWeek weekday = d a t e . getDayOfWeek () ;

We can get numerical value of weekday to compute the correct indentation
of the first day in the month:

i n t v a l u e = weekday . g e t V a l u e () ;
f o r (i n t i =1; i<v a l u e ; i ++) {

System . out . p r i n t (” ”) ;
}

Prof. Michele Loreti Object Oriented Programming 74 / 425

Example: Calendar application in Java

Method getDayOfWeek() can be used to get weekday on which the date fall:

DayOfWeek weekday = d a t e . getDayOfWeek () ;

We can get numerical value of weekday to compute the correct indentation
of the first day in the month:

i n t v a l u e = weekday . g e t V a l u e () ;
f o r (i n t i =1; i<v a l u e ; i ++) {

System . out . p r i n t (” ”) ;
}

Prof. Michele Loreti Object Oriented Programming 74 / 425

Example: Calendar application in Java

p u b l i c s t a t i c v o i d main (S t r i n g [] a r g v) {
Loca lDate d a t e = Loca lDate . now () . withDayOfMonth (1) ;
i n t month = d a t e . getMonthValue () ;
System . out . p r i n t l n (” Mon Tue Wed Thu F r i Sat Sun”) ;
DayOfWeek weekday = d a t e . getDayOfWeek () ;
i n t v a l u e = weekday . g e t V a l u e () ;
f o r (i n t i =1; i<v a l u e ; i ++) {

System . out . p r i n t (” ”) ;
}
w h i l e (da t e . getMonthValue () == month) {

System . out . p r i n t f (”%4d” , d a te . getDayOfMonth ()) ;
d a t e = da t e . p l u s D a y s (1) ;
i f (d at e . getDayOfWeek () . g e t V a l u e () ==1) {

System . out . p r i n t l n () ;
}

}
}

Prof. Michele Loreti Object Oriented Programming 75 / 425

Accessor and Mutator Methods

We have two kinds of methods:

� accessors that are used to retrieve info from an object:

d a te . p l u s D a y s (1)

� mutators that change the state of the object in which it was invoked.

All methods of class LocalDate are accessors!

An example of mutator method is:

A r r a y L i s t <S t r i n g > b e v e r a g e s = new A r r a y L i s t <>() ;
b e v e r a g e s . add (” Beer ”) ;

Prof. Michele Loreti Object Oriented Programming 76 / 425

Accessor and Mutator Methods

We have two kinds of methods:

� accessors that are used to retrieve info from an object:

d a te . p l u s D a y s (1)

� mutators that change the state of the object in which it was invoked.

All methods of class LocalDate are accessors!

An example of mutator method is:

A r r a y L i s t <S t r i n g > b e v e r a g e s = new A r r a y L i s t <>() ;
b e v e r a g e s . add (” Beer ”) ;

Prof. Michele Loreti Object Oriented Programming 76 / 425

Accessor and Mutator Methods

We have two kinds of methods:

� accessors that are used to retrieve info from an object:

d a te . p l u s D a y s (1)

� mutators that change the state of the object in which it was invoked.

All methods of class LocalDate are accessors!

An example of mutator method is:

A r r a y L i s t <S t r i n g > b e v e r a g e s = new A r r a y L i s t <>() ;
b e v e r a g e s . add (” Beer ”) ;

Prof. Michele Loreti Object Oriented Programming 76 / 425

Object References

In Java a variable can only holds references to an object.

If we assign a variable holding an object to another variable, we have two
references to the same object:

A r r a y L i s t <S t r i n g > d r i n k s = b e v e r a g e s ;

When we change the object, the mutation is observed by both the
references:

d r i n k s . add (” Cola ”) ; //The s i z e o f b e v e r a g e s i s 2 !

Sharing an object is efficient and convenient! But it could be
dangerous!

Prof. Michele Loreti Object Oriented Programming 77 / 425

Object References

In Java a variable can only holds references to an object.

If we assign a variable holding an object to another variable, we have two
references to the same object:

A r r a y L i s t <S t r i n g > d r i n k s = b e v e r a g e s ;

When we change the object, the mutation is observed by both the
references:

d r i n k s . add (” Cola ”) ; //The s i z e o f b e v e r a g e s i s 2 !

Sharing an object is efficient and convenient! But it could be
dangerous!

Prof. Michele Loreti Object Oriented Programming 77 / 425

Object References

In Java a variable can only holds references to an object.

If we assign a variable holding an object to another variable, we have two
references to the same object:

A r r a y L i s t <S t r i n g > d r i n k s = b e v e r a g e s ;

When we change the object, the mutation is observed by both the
references:

d r i n k s . add (” Cola ”) ; //The s i z e o f b e v e r a g e s i s 2 !

Sharing an object is efficient and convenient! But it could be
dangerous!

Prof. Michele Loreti Object Oriented Programming 77 / 425

Implementing Classes

We consider a standard example in object oriented: the class of employees.

An employee has:

� a name;

� a salary.

Name and salary are the values in the state of an employee object. In
Java these are rendered as instance variables:

p u b l i c c l a s s Employee {
p r i v a t e S t r i n g name ;
p r i v a t e d o u b l e s a l a r y ;
. . .

}

Prof. Michele Loreti Object Oriented Programming 78 / 425

Implementing Classes

We consider a standard example in object oriented: the class of employees.

An employee has:

� a name;

� a salary.

Name and salary are the values in the state of an employee object. In
Java these are rendered as instance variables:

p u b l i c c l a s s Employee {
p r i v a t e S t r i n g name ;
p r i v a t e d o u b l e s a l a r y ;
. . .

}

Prof. Michele Loreti Object Oriented Programming 78 / 425

Implementing Classes

We consider a standard example in object oriented: the class of employees.

An employee has:

� a name;

� a salary.

Name and salary are the values in the state of an employee object. In
Java these are rendered as instance variables:

p u b l i c c l a s s Employee {
p r i v a t e S t r i n g name ;
p r i v a t e d o u b l e s a l a r y ;
. . .

}

Prof. Michele Loreti Object Oriented Programming 78 / 425

Method Headers

We can now implement methods for the Employee.

When we declare a method we provide:

� a name;

� types and names of its parameters;

� return type.

For instance:

p u b l i c v o i d r a i s e S a l a r y (d o u b l e b y P e r c e n t) {
. . .

}

p u b l i c S t r i n g getName () {
. . .

}

Prof. Michele Loreti Object Oriented Programming 79 / 425

Method Headers

We can now implement methods for the Employee.

When we declare a method we provide:

� a name;

� types and names of its parameters;

� return type.

For instance:

p u b l i c v o i d r a i s e S a l a r y (d o u b l e b y P e r c e n t) {
. . .

}

p u b l i c S t r i n g getName () {
. . .

}

Prof. Michele Loreti Object Oriented Programming 79 / 425

Method Headers

We can now implement methods for the Employee.

When we declare a method we provide:

� a name;

� types and names of its parameters;

� return type.

For instance:

p u b l i c v o i d r a i s e S a l a r y (d o u b l e b y P e r c e n t) {
. . .

}

p u b l i c S t r i n g getName () {
. . .

}

Prof. Michele Loreti Object Oriented Programming 79 / 425

Method Headers

We can now implement methods for the Employee.

When we declare a method we provide:

� a name;

� types and names of its parameters;

� return type.

For instance:

p u b l i c v o i d r a i s e S a l a r y (d o u b l e b y P e r c e n t) {
. . .

}

p u b l i c S t r i n g getName () {
. . .

}

Prof. Michele Loreti Object Oriented Programming 79 / 425

Method Headers

We can now implement methods for the Employee.

When we declare a method we provide:

� a name;

� types and names of its parameters;

� return type.

For instance:

p u b l i c v o i d r a i s e S a l a r y (d o u b l e b y P e r c e n t) {
. . .

}

p u b l i c S t r i n g getName () {
. . .

}

Prof. Michele Loreti Object Oriented Programming 79 / 425

Method Headers

We can now implement methods for the Employee.

When we declare a method we provide:

� a name;

� types and names of its parameters;

� return type.

For instance:

p u b l i c v o i d r a i s e S a l a r y (d o u b l e b y P e r c e n t) {
. . .

}

p u b l i c S t r i n g getName () {
. . .

}

Prof. Michele Loreti Object Oriented Programming 79 / 425

Method Headers

We can now implement methods for the Employee.

When we declare a method we provide:

� a name;

� types and names of its parameters;

� return type.

For instance:

p u b l i c v o i d r a i s e S a l a r y (d o u b l e b y P e r c e n t) {
. . .

}

p u b l i c S t r i n g getName () {
. . .

}

Prof. Michele Loreti Object Oriented Programming 79 / 425

Method Bodies

We have to define a body for our methods:

p u b l i c v o i d r a i s e S a l a r y (d o u b l e b y P e r c e n t) {
d o u b l e r a i s e = t h i s . s a l a r y ∗ b y P e r c e n t / 1 0 0 ;
t h i s . s a l a r y += r a i s e ;

}

p u b l i c v o i d getName () {
r e t u r n t h i s . name ;

}

The keyword this is used to refer to the object that received the invocation
of the method.

Prof. Michele Loreti Object Oriented Programming 80 / 425

Method Bodies

We have to define a body for our methods:

p u b l i c v o i d r a i s e S a l a r y (d o u b l e b y P e r c e n t) {
d o u b l e r a i s e = t h i s . s a l a r y ∗ b y P e r c e n t / 1 0 0 ;
t h i s . s a l a r y += r a i s e ;

}

p u b l i c v o i d getName () {
r e t u r n t h i s . name ;

}

The keyword this is used to refer to the object that received the invocation
of the method.

Prof. Michele Loreti Object Oriented Programming 80 / 425

Object construction

The last step to complete our Employee is to provide a constructor.

A constructor is similar to declaring a method. However:

� the name of the constructor must be the same as the class name;

� there is no return type.

p u b l i c Employee (S t r i n g name , d o u b l e s a l a r y) {
t h i s . name = name ;
t h i s . s a l a r y = s a l a r y ;

}

A constructor executes when we use the new operator:

new Employee (” P e t e r P a r k e r ” ,1000) ;

Prof. Michele Loreti Object Oriented Programming 81 / 425

Object construction

The last step to complete our Employee is to provide a constructor.

A constructor is similar to declaring a method. However:

� the name of the constructor must be the same as the class name;

� there is no return type.

p u b l i c Employee (S t r i n g name , d o u b l e s a l a r y) {
t h i s . name = name ;
t h i s . s a l a r y = s a l a r y ;

}

A constructor executes when we use the new operator:

new Employee (” P e t e r P a r k e r ” ,1000) ;

Prof. Michele Loreti Object Oriented Programming 81 / 425

Object construction

The last step to complete our Employee is to provide a constructor.

A constructor is similar to declaring a method. However:

� the name of the constructor must be the same as the class name;

� there is no return type.

p u b l i c Employee (S t r i n g name , d o u b l e s a l a r y) {
t h i s . name = name ;
t h i s . s a l a r y = s a l a r y ;

}

A constructor executes when we use the new operator:

new Employee (” P e t e r P a r k e r ” ,1000) ;

Prof. Michele Loreti Object Oriented Programming 81 / 425

Object construction

The last step to complete our Employee is to provide a constructor.

A constructor is similar to declaring a method. However:

� the name of the constructor must be the same as the class name;

� there is no return type.

p u b l i c Employee (S t r i n g name , d o u b l e s a l a r y) {
t h i s . name = name ;
t h i s . s a l a r y = s a l a r y ;

}

A constructor executes when we use the new operator:

new Employee (” P e t e r P a r k e r ” ,1000) ;

Prof. Michele Loreti Object Oriented Programming 81 / 425

Overloading

We can have more than one version of the constructor:

p u b l i c Employee (d o u b l e s a l a r y) {
t h i s . name = ”” ;
t h i s . s a l a r y = s a l a r y ;

}

Our class has now two constructors, and we say that the constructor is
overloaded.

To avoid duplicated code, we can call one constructor from the other:

p u b l i c Employee (d o u b l e s a l a r y) {
t h i s (”” , s a l a r y) ;

}

Prof. Michele Loreti Object Oriented Programming 82 / 425

Overloading

We can have more than one version of the constructor:

p u b l i c Employee (d o u b l e s a l a r y) {
t h i s . name = ”” ;
t h i s . s a l a r y = s a l a r y ;

}

Our class has now two constructors, and we say that the constructor is
overloaded.

To avoid duplicated code, we can call one constructor from the other:

p u b l i c Employee (d o u b l e s a l a r y) {
t h i s (”” , s a l a r y) ;

}

Prof. Michele Loreti Object Oriented Programming 82 / 425

Overloading

We can have more than one version of the constructor:

p u b l i c Employee (d o u b l e s a l a r y) {
t h i s . name = ”” ;
t h i s . s a l a r y = s a l a r y ;

}

Our class has now two constructors, and we say that the constructor is
overloaded.

To avoid duplicated code, we can call one constructor from the other:

p u b l i c Employee (d o u b l e s a l a r y) {
t h i s (”” , s a l a r y) ;

}

Prof. Michele Loreti Object Oriented Programming 82 / 425

Default initialisation

If a field is not assigned in a constructor, it is automatically assigned to a
default value:

� 0 for numerical values;

� false for booleans;

� null for objects.

p u b l i c Employee (S t r i n g name) {
t h i s . name = name ;
// S a l a r y i s a u t o m a t i c a l l y s e t to z e r o !

}

It is convenient, to avoid errors, to explicitly assign all fields that
are objects!

Prof. Michele Loreti Object Oriented Programming 83 / 425

Default initialisation

If a field is not assigned in a constructor, it is automatically assigned to a
default value:

� 0 for numerical values;

� false for booleans;

� null for objects.

p u b l i c Employee (S t r i n g name) {
t h i s . name = name ;
// S a l a r y i s a u t o m a t i c a l l y s e t to z e r o !

}

It is convenient, to avoid errors, to explicitly assign all fields that
are objects!

Prof. Michele Loreti Object Oriented Programming 83 / 425

Instance Variable Initialisation

Instance variable can have a default initial value:

p u b l i c c l a s s Employee {

p r i v a t e S t r i n g name = ”” ;

The initialisation occur after an object has been allocated and before a
constructor runs.

Constructors may overwrite this value!

Prof. Michele Loreti Object Oriented Programming 84 / 425

Instance Variable Initialisation

Instance variable can have a default initial value:

p u b l i c c l a s s Employee {

p r i v a t e S t r i n g name = ”” ;

The initialisation occur after an object has been allocated and before a
constructor runs.

Constructors may overwrite this value!

Prof. Michele Loreti Object Oriented Programming 84 / 425

Instance Variable Initialisation

Instance variable can have a default initial value:

p u b l i c c l a s s Employee {

p r i v a t e S t r i n g name = ”” ;

The initialisation occur after an object has been allocated and before a
constructor runs.

Constructors may overwrite this value!

Prof. Michele Loreti Object Oriented Programming 84 / 425

Initialisation blocks

We can include arbitrary initialisation blocks:

p u b l i c c l a s s Employee {

p r i v a t e S t r i n g name = ”” ;
p r i v a t e d o u b l e s a l a r y ;
p r i v a t e i n t i d ;

{
Random g e n e r a t o r = new Random () ;
i d = 1+ g e n e r a t o r . n e x t I n t (1 0 0 0 0 0 0) ;

}

Prof. Michele Loreti Object Oriented Programming 85 / 425

Initialisation blocks

We can include arbitrary initialisation blocks:

p u b l i c c l a s s Employee {

p r i v a t e S t r i n g name = ”” ;
p r i v a t e d o u b l e s a l a r y ;
p r i v a t e i n t i d ;

{
Random g e n e r a t o r = new Random () ;
i d = 1+ g e n e r a t o r . n e x t I n t (1 0 0 0 0 0 0) ;

}

Prof. Michele Loreti Object Oriented Programming 85 / 425

Final Instance Variables

We can declare an instance variable final . In this case this must be
initialised at the end of any constructor.

Afterwards, the variable may not be modified again.

p u b l i c c l a s s Employee {

p r i v a t e f i n a l S t r i n g name ;

. . . .

}

Prof. Michele Loreti Object Oriented Programming 86 / 425

Final Instance Variables

We can declare an instance variable final . In this case this must be
initialised at the end of any constructor.

Afterwards, the variable may not be modified again.

p u b l i c c l a s s Employee {

p r i v a t e f i n a l S t r i n g name ;

. . . .

}

Prof. Michele Loreti Object Oriented Programming 86 / 425

Final Instance Variables

We can declare an instance variable final . In this case this must be
initialised at the end of any constructor.

Afterwards, the variable may not be modified again.

p u b l i c c l a s s Employee {

p r i v a t e f i n a l S t r i n g name ;

. . . .

}

Prof. Michele Loreti Object Oriented Programming 86 / 425

Default constructor

A special constructor is the one without arguments:

p u b l i c Employee () {
t h i s . name = ”” ;
t h i s . s a l a r y = 0 ;

}

A class with no constructors is automatically equipped with a default
constructor.

Prof. Michele Loreti Object Oriented Programming 87 / 425

Default constructor

A special constructor is the one without arguments:

p u b l i c Employee () {
t h i s . name = ”” ;
t h i s . s a l a r y = 0 ;

}

A class with no constructors is automatically equipped with a default
constructor.

Prof. Michele Loreti Object Oriented Programming 87 / 425

Default constructor

A special constructor is the one without arguments:

p u b l i c Employee () {
t h i s . name = ”” ;
t h i s . s a l a r y = 0 ;

}

A class with no constructors is automatically equipped with a default
constructor.

Prof. Michele Loreti Object Oriented Programming 87 / 425

Static variables

We can declare a variable as static . This is associated with the class and
shared among all the instances.

p u b l i c c l a s s Employee {
p r i v a t e s t a t i c i n t l a s t I d = 0 ;
p r i v a t e i n t i d ;

p u b l i c Employee () {
l a s t I d ++;
i d = l a s t I d ;

}
. . .

}

Mutable static variables should be used with attention. However,
constants are quite common:

p u b l i c s t a t i c f i n a l d u b l e PI = 3 . 1 4 1 5 . . .

Prof. Michele Loreti Object Oriented Programming 88 / 425

Static variables

We can declare a variable as static . This is associated with the class and
shared among all the instances.

p u b l i c c l a s s Employee {
p r i v a t e s t a t i c i n t l a s t I d = 0 ;
p r i v a t e i n t i d ;

p u b l i c Employee () {
l a s t I d ++;
i d = l a s t I d ;

}
. . .

}

Mutable static variables should be used with attention. However,
constants are quite common:

p u b l i c s t a t i c f i n a l d u b l e PI = 3 . 1 4 1 5 . . .

Prof. Michele Loreti Object Oriented Programming 88 / 425

Static initialisation blocks

A static initialisation block can be used to initialise code at the level of
classes.

These are used when we need to perform complex computations to
initialise static variables or constants.

p u b l i c c l a s s Cred i tCardForm {

p r i v a t e s t a t i c f i n a l A r r a y L i s t <I n t e g e r > e x p i r a t i o n Y e a r =
new A r r a y L i s t <>() ;

s t a t i c {
i n t y e a r = Loca lDate . now () . g e t Y e a r () ;
f o r (i n t i=y e a r ; i<y e a r +20; i++) {

e x p i r a t i o n Y e a r . add (y e a r) ;
}

}

. . .

}

Prof. Michele Loreti Object Oriented Programming 89 / 425

Static initialisation blocks

A static initialisation block can be used to initialise code at the level of
classes.
These are used when we need to perform complex computations to
initialise static variables or constants.

p u b l i c c l a s s Cred i tCardForm {

p r i v a t e s t a t i c f i n a l A r r a y L i s t <I n t e g e r > e x p i r a t i o n Y e a r =
new A r r a y L i s t <>() ;

s t a t i c {
i n t y e a r = Loca lDate . now () . g e t Y e a r () ;
f o r (i n t i=y e a r ; i<y e a r +20; i++) {

e x p i r a t i o n Y e a r . add (y e a r) ;
}

}

. . .

}

Prof. Michele Loreti Object Oriented Programming 89 / 425

Static initialisation blocks

A static initialisation block can be used to initialise code at the level of
classes.
These are used when we need to perform complex computations to
initialise static variables or constants.

p u b l i c c l a s s Cred i tCardForm {

p r i v a t e s t a t i c f i n a l A r r a y L i s t <I n t e g e r > e x p i r a t i o n Y e a r =
new A r r a y L i s t <>() ;

s t a t i c {
i n t y e a r = Loca lDate . now () . g e t Y e a r () ;
f o r (i n t i=y e a r ; i<y e a r +20; i++) {

e x p i r a t i o n Y e a r . add (y e a r) ;
}

}

. . .

} Prof. Michele Loreti Object Oriented Programming 89 / 425

Static Methods

Static methods are methods that do not operate on objects:

Math . pow (x , a) ;

A common use of static methods is for factory methods.

These are used to build an object.

Question: Why not use a constructor?

� we can built different objects with the same parameters:

NumberFormat . g e t C u r r e n c y I n s t a n c e ()
NumberFormat . g e t P e r c e n t I n s t a n c e ()

� we can obtain instances of a subclass

� we are independent from a specific implementation!

Prof. Michele Loreti Object Oriented Programming 90 / 425

Static Methods

Static methods are methods that do not operate on objects:

Math . pow (x , a) ;

A common use of static methods is for factory methods.

These are used to build an object.

Question: Why not use a constructor?

� we can built different objects with the same parameters:

NumberFormat . g e t C u r r e n c y I n s t a n c e ()
NumberFormat . g e t P e r c e n t I n s t a n c e ()

� we can obtain instances of a subclass

� we are independent from a specific implementation!

Prof. Michele Loreti Object Oriented Programming 90 / 425

Static Methods

Static methods are methods that do not operate on objects:

Math . pow (x , a) ;

A common use of static methods is for factory methods.

These are used to build an object.

Question: Why not use a constructor?

� we can built different objects with the same parameters:

NumberFormat . g e t C u r r e n c y I n s t a n c e ()
NumberFormat . g e t P e r c e n t I n s t a n c e ()

� we can obtain instances of a subclass

� we are independent from a specific implementation!

Prof. Michele Loreti Object Oriented Programming 90 / 425

Static Methods

Static methods are methods that do not operate on objects:

Math . pow (x , a) ;

A common use of static methods is for factory methods.

These are used to build an object.

Question: Why not use a constructor?

� we can built different objects with the same parameters:

NumberFormat . g e t C u r r e n c y I n s t a n c e ()
NumberFormat . g e t P e r c e n t I n s t a n c e ()

� we can obtain instances of a subclass

� we are independent from a specific implementation!

Prof. Michele Loreti Object Oriented Programming 90 / 425

Static Methods

Static methods are methods that do not operate on objects:

Math . pow (x , a) ;

A common use of static methods is for factory methods.

These are used to build an object.

Question: Why not use a constructor?

� we can built different objects with the same parameters:

NumberFormat . g e t C u r r e n c y I n s t a n c e ()
NumberFormat . g e t P e r c e n t I n s t a n c e ()

� we can obtain instances of a subclass

� we are independent from a specific implementation!

Prof. Michele Loreti Object Oriented Programming 90 / 425

Static Methods

Static methods are methods that do not operate on objects:

Math . pow (x , a) ;

A common use of static methods is for factory methods.

These are used to build an object.

Question: Why not use a constructor?

� we can built different objects with the same parameters:

NumberFormat . g e t C u r r e n c y I n s t a n c e ()
NumberFormat . g e t P e r c e n t I n s t a n c e ()

� we can obtain instances of a subclass

� we are independent from a specific implementation!

Prof. Michele Loreti Object Oriented Programming 90 / 425

Static Methods

Static methods are methods that do not operate on objects:

Math . pow (x , a) ;

A common use of static methods is for factory methods.

These are used to build an object.

Question: Why not use a constructor?

� we can built different objects with the same parameters:

NumberFormat . g e t C u r r e n c y I n s t a n c e ()
NumberFormat . g e t P e r c e n t I n s t a n c e ()

� we can obtain instances of a subclass

� we are independent from a specific implementation!

Prof. Michele Loreti Object Oriented Programming 90 / 425

Packages. . .

In Java classes are placed into packages.

We can organise our code that can be structured according the use:

� java . lang

� java . util

� java .math

� . . .

Packages guarantee the uniqueness of class name!

Prof. Michele Loreti Object Oriented Programming 91 / 425

Packages. . .

In Java classes are placed into packages.

We can organise our code that can be structured according the use:

� java . lang

� java . util

� java .math

� . . .

Packages guarantee the uniqueness of class name!

Prof. Michele Loreti Object Oriented Programming 91 / 425

Packages. . .

In Java classes are placed into packages.

We can organise our code that can be structured according the use:

� java . lang

� java . util

� java .math

� . . .

Packages guarantee the uniqueness of class name!

Prof. Michele Loreti Object Oriented Programming 91 / 425

Package declaration

A package name is a dot-separated list of identifiers

j a v a . u t i l . r e g e x

To guarantee unique package names it is a good idea to use an Internet
domain name (written in the reverse order):

http://quasylab.unicam.it −→ it .unicam.quasylab

http://quanticol.github.io −→ io . quanticol .github

http://pspaces.github.io −→ io . quanticol .pspaces

Java packages do not nest: there is no relation between java . util and
java . util . regex.

Prof. Michele Loreti Object Oriented Programming 92 / 425

http://quasylab.unicam.it
http://quanticol.github.io
http://pspaces.github.io

Package declaration

A package name is a dot-separated list of identifiers

j a v a . u t i l . r e g e x

To guarantee unique package names it is a good idea to use an Internet
domain name (written in the reverse order):

http://quasylab.unicam.it −→ it .unicam.quasylab

http://quanticol.github.io −→ io . quanticol .github

http://pspaces.github.io −→ io . quanticol .pspaces

Java packages do not nest: there is no relation between java . util and
java . util . regex.

Prof. Michele Loreti Object Oriented Programming 92 / 425

http://quasylab.unicam.it
http://quanticol.github.io
http://pspaces.github.io

Package declaration

package i t . unicam . c s . pa ;

p u b l i c c l a s s Employee {
. . .

}

Each class has a fully qualified name:

packagename.ClassName

There exists also a default package that contains all classes without a
package declaration. It is use is not recommended!

The path of a class must match the structure of the file system:

it .unicam.cs.pa −→ it/unicam/cs/ps

Prof. Michele Loreti Object Oriented Programming 93 / 425

Package declaration

package i t . unicam . c s . pa ;

p u b l i c c l a s s Employee {
. . .

}

Each class has a fully qualified name:

packagename.ClassName

There exists also a default package that contains all classes without a
package declaration. It is use is not recommended!

The path of a class must match the structure of the file system:

it .unicam.cs.pa −→ it/unicam/cs/ps

Prof. Michele Loreti Object Oriented Programming 93 / 425

Package declaration

package i t . unicam . c s . pa ;

p u b l i c c l a s s Employee {
. . .

}

Each class has a fully qualified name:

packagename.ClassName

There exists also a default package that contains all classes without a
package declaration. It is use is not recommended!

The path of a class must match the structure of the file system:

it .unicam.cs.pa −→ it/unicam/cs/ps

Prof. Michele Loreti Object Oriented Programming 93 / 425

Package declaration

package i t . unicam . c s . pa ;

p u b l i c c l a s s Employee {
. . .

}

Each class has a fully qualified name:

packagename.ClassName

There exists also a default package that contains all classes without a
package declaration. It is use is not recommended!

The path of a class must match the structure of the file system:

it .unicam.cs.pa −→ it/unicam/cs/ps

Prof. Michele Loreti Object Oriented Programming 93 / 425

Compiling a Java class

Each Java projects should be structured with the following folders:

� src: that contains all source files;

� bin: where the .class files are generated;

� libs: with the required libraries;

� doc: with all the documentation.

To build a .java file the following command (executed in the src folder)
should be used:

javac packagepath/Classname.java

A tool supporting the building of Java projects is crucial!

Prof. Michele Loreti Object Oriented Programming 94 / 425

Compiling a Java class

Each Java projects should be structured with the following folders:

� src: that contains all source files;

� bin: where the .class files are generated;

� libs: with the required libraries;

� doc: with all the documentation.

To build a .java file the following command (executed in the src folder)
should be used:

javac packagepath/Classname.java

A tool supporting the building of Java projects is crucial!

Prof. Michele Loreti Object Oriented Programming 94 / 425

Compiling a Java class

Each Java projects should be structured with the following folders:

� src: that contains all source files;

� bin: where the .class files are generated;

� libs: with the required libraries;

� doc: with all the documentation.

To build a .java file the following command (executed in the src folder)
should be used:

javac packagepath/Classname.java

A tool supporting the building of Java projects is crucial!

Prof. Michele Loreti Object Oriented Programming 94 / 425

Classpath

A class path is a path with all the dependencies needed by our code.

In the class path we can include:

� Directories containing class (in the appropriate subdirectories);

� JAR files;

� Directories containing JARs.

The class path can be passed to the compiler after the parameter -cp:

javac -cp .:../libs/* packagepath/Classname.java

Prof. Michele Loreti Object Oriented Programming 95 / 425

Classpath

A class path is a path with all the dependencies needed by our code.

In the class path we can include:

� Directories containing class (in the appropriate subdirectories);

� JAR files;

� Directories containing JARs.

The class path can be passed to the compiler after the parameter -cp:

javac -cp .:../libs/* packagepath/Classname.java

Prof. Michele Loreti Object Oriented Programming 95 / 425

Classpath

A class path is a path with all the dependencies needed by our code.

In the class path we can include:

� Directories containing class (in the appropriate subdirectories);

� JAR files;

� Directories containing JARs.

The class path can be passed to the compiler after the parameter -cp:

javac -cp .:../libs/* packagepath/Classname.java

Prof. Michele Loreti Object Oriented Programming 95 / 425

Package Access

We have already seen the modifiers public and private .

A public feature can be accessed by any class.

A private feature can be accessed only by class that declare it.

If a feature has not any modifier its visibility is at the level of package: all
classes in the same package can use that feature!

By default any package is open ended: new classes can be added to
a package!

Prof. Michele Loreti Object Oriented Programming 96 / 425

Package Access

We have already seen the modifiers public and private .

A public feature can be accessed by any class.

A private feature can be accessed only by class that declare it.

If a feature has not any modifier its visibility is at the level of package: all
classes in the same package can use that feature!

By default any package is open ended: new classes can be added to
a package!

Prof. Michele Loreti Object Oriented Programming 96 / 425

Package Access

We have already seen the modifiers public and private .

A public feature can be accessed by any class.

A private feature can be accessed only by class that declare it.

If a feature has not any modifier its visibility is at the level of package: all
classes in the same package can use that feature!

By default any package is open ended: new classes can be added to
a package!

Prof. Michele Loreti Object Oriented Programming 96 / 425

Package Access

We have already seen the modifiers public and private .

A public feature can be accessed by any class.

A private feature can be accessed only by class that declare it.

If a feature has not any modifier its visibility is at the level of package: all
classes in the same package can use that feature!

By default any package is open ended: new classes can be added to
a package!

Prof. Michele Loreti Object Oriented Programming 96 / 425

Package Access

We have already seen the modifiers public and private .

A public feature can be accessed by any class.

A private feature can be accessed only by class that declare it.

If a feature has not any modifier its visibility is at the level of package: all
classes in the same package can use that feature!

By default any package is open ended: new classes can be added to
a package!

Prof. Michele Loreti Object Oriented Programming 96 / 425

Importing classes

The import statement can be used to import classes that can be used
without the fully qualified name:

i m p o r t j a v a . u t i l . Ramdom ;

You can import all classes of a package by using the symbol ∗:

i m p o r t j a v a . u t i l . ∗ ;

This approach is discouraged!

Static import can be used to import all (or specific) static methods and
variables defined in a class:

i m p o r t s t a t i c j a v a . l a n g . Math . ∗ ;

After that you can use all the static methods in Math without prefix.

Prof. Michele Loreti Object Oriented Programming 97 / 425

Importing classes

The import statement can be used to import classes that can be used
without the fully qualified name:

i m p o r t j a v a . u t i l . Ramdom ;

You can import all classes of a package by using the symbol ∗:

i m p o r t j a v a . u t i l . ∗ ;

This approach is discouraged!

Static import can be used to import all (or specific) static methods and
variables defined in a class:

i m p o r t s t a t i c j a v a . l a n g . Math . ∗ ;

After that you can use all the static methods in Math without prefix.

Prof. Michele Loreti Object Oriented Programming 97 / 425

Importing classes

The import statement can be used to import classes that can be used
without the fully qualified name:

i m p o r t j a v a . u t i l . Ramdom ;

You can import all classes of a package by using the symbol ∗:

i m p o r t j a v a . u t i l . ∗ ;

This approach is discouraged!

Static import can be used to import all (or specific) static methods and
variables defined in a class:

i m p o r t s t a t i c j a v a . l a n g . Math . ∗ ;

After that you can use all the static methods in Math without prefix.

Prof. Michele Loreti Object Oriented Programming 97 / 425

Importing classes

The import statement can be used to import classes that can be used
without the fully qualified name:

i m p o r t j a v a . u t i l . Ramdom ;

You can import all classes of a package by using the symbol ∗:

i m p o r t j a v a . u t i l . ∗ ;

This approach is discouraged!

Static import can be used to import all (or specific) static methods and
variables defined in a class:

i m p o r t s t a t i c j a v a . l a n g . Math . ∗ ;

After that you can use all the static methods in Math without prefix.

Prof. Michele Loreti Object Oriented Programming 97 / 425

To be continued. . .

Prof. Michele Loreti Object Oriented Programming 98 / 425

