
Corso di Progettazione di 
Applicazioni Web e Mobile

Mirko Calvaresi

Università di Camerino - Mirko Calvaresi - Progettazione 
Applicazioni Web e Mobile



What this is about?

How a web appliaction works?

let’s make and example: 
google.com

Università di Camerino - Mirko Calvaresi - Progettazione 
Applicazioni Web e Mobile



What happens when we 
type on a browser 

“www.google.com”?

Università di Camerino - Mirko Calvaresi - Progettazione 
Applicazioni Web e Mobile



Università di Camerino - Mirko Calvaresi - Progettazione 
Applicazioni Web e Mobile



HTTP REQUEST AND RESPONSE



DATA SENT WITH HTTP REQUEST

1. http method
2. url
3. http headers
4. http body
5. accept header
6. (content negotiation)
7. user agent

https://developer.mozilla.org/en-US/docs/Web/HTTP

https://developer.mozilla.org/en-US/docs/Web/HTTP


MANAGE A STATE IN HTTP REQUEST

http://www.ietf.org/rfc/rfc2965.txt

Set-Cookie: Set-Cookie: sessionid=38afes7a8; HttpOnly; Path=/

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

http://www.ietf.org/rfc/rfc2965.txt
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies


THE ENTIRE STACK 

1. Key down, key up, key press events
2. DNS lookup of the url, resolve CNAME after CNAME until you

get to an A record
3. open socket to ip
4. ethernet wraps tcp wraps http
5. tcp slow-start handshake
6. https handshake
7. client verifies trust chain
8. http method, headers, accept, hostname
9. server parses request and forms response
10.browser parses response, loads DOM
11.browser stops at <script>, <link>, <style>
12.onload, render
13.writes win32 messages to paint the screen



HTTP/2 

http://httpwg.org/specs/rfc7540.html

HTTP/2 provides an optimized transport for HTTP semantics. HTTP/2 supports
all of the core features of HTTP/1.1 but aims to be more efficient in several
ways.
The basic protocol unit in HTTP/2 is a frame (Section 4.1). Each frame type
serves a different purpose. For example, HEADERS and DATA frames form
the basis of HTTP requests and responses (Section 8.1); other frame types
like SETTINGS, WINDOW_UPDATE, and PUSH_PROMISE are used in support
of other HTTP/2 features.
Multiplexing of requests is achieved by having each HTTP request/response
exchange associated with its own stream. Streams are largely independent of 
each other, so a blocked or stalled request or response does not prevent
progress on other streams.

http://httpwg.org/specs/rfc7540.html
http://httpwg.org/specs/rfc7540.html
http://httpwg.org/specs/rfc7540.html
http://httpwg.org/specs/rfc7540.html
http://httpwg.org/specs/rfc7540.html
http://httpwg.org/specs/rfc7540.html
http://httpwg.org/specs/rfc7540.html
http://httpwg.org/specs/rfc7540.html


HTTP vs HTTPS



HTTP vs HTTPS

HTTPS protects the integrity of the website
Encryption prevents intruders from tampering with exchanged data—e.g. 
rewriting content, injecting unwanted and malicious content, and so on.

HTTPS protects the privacy and security of the user
Encryption prevents intruders from listening in on the exchanged data. Each
unprotected request can reveal sensitive information about the user, and 
when such data is aggregated across many sessions, can be used to de-
anonymize their identities and reveal other sensitive information. All
browsing activity, as far as the user is concerned, should be considered
private and sensitive.

HTTPS enables features on the web
The security and integrity guarantees provided by HTTPS are critical
components for delivering a secure user permission workflow and protecting
their preferences.

https://hpbn.co/transport-layer-security-tls/



ANATOMY OF WEB APPLICATION



PRESENTATION LAYER

The presentation layer is where the data is formatted and 
presented to the user .
In a classic scenario this corresponds to the page flow, including
the controller activity, form validation, and user feedback.

Involves the HTML but also the backend component that controls
the flow.



SERVICE LAYER

The service layer is where
the business logic of the application is implemented
data is analyzed
business rules applied
integration with other system invoked.



PERSISTENCE LAYER

The persistence layer is where the data is simply saved or 
retrieved from:

relational database 
noSQL database
File System



MODEL VIEW CONTROLLER

Model–view–controller (MVC) is an 
architectural pattern commonly used for 
developing user interfaces that divides an 
application into three interconnected parts. 
This is done to separate internal
representations of information from the 
ways information is presented to and 
accepted from the user.[1][2] The MVC 
design pattern decouples these major 
components allowing for efficient code reuse
and parallel development (Wikipedia)

https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Code_reuse


AN EXAMPLE OF MVC CONTROLLER APPLICATION

https://github.com/spring-projects/spring-petclinic

git clone https://github.com/spring-projects/spring-petclinic.git
cd spring-petclinic
./mvnw spring-boot:run

https://github.com/spring-projects/spring-petclinic


AN EXAMPLE OF MVC CONTROLLER APPLICATION

With the evolution of the WEB Browser and the introduction of 
Javascript Framework more and more application logic has been 

moved to the front end

At the base of this approach is the possibility to execute web request from 
the browser using Javascript – AJAX



SINGLE PAGE APPLICATION

A web application or web site that fits on a single web page with the goal of 
providing a more fluid user experience akin to a desktop application. 
Wikipedia

Single page:
– interaction without page reloading
– data dynamically loaded from Server Side 
– fluid transitions
– intensive use of javascript
They typically do not have
– support for crawlers
– support for legacy browsers



SINGLE PAGE APPLICATION

The single page application philosopy was made possible for the introduction to at
least 3 major component:

1 JSON based SERVICES (https://tools.ietf.org/html/rfc8259)
2 HTML5
3 Evolution of javascript framework

https://tools.ietf.org/html/rfc8259


SINGLE PAGE APPLICATION Example

https://github.com/intojs/architecting-single-page-applications

https://codepen.io/Big_Brosh/pen/GObWow?page=1&

https://codepen.io/tag/reactjs/

https://github.com/intojs/architecting-single-page-applications
https://codepen.io/Big_Brosh/pen/GObWow?page=1&
https://codepen.io/tag/reactjs/


REQUIREMENTS

It is unreasonable to expect that business stakeholders in a potential 
solution can articulate a set of complete, fully- developed consistent 
requirements through part-time involvement in a few requirements 

gathering exercises. 

• Ignoring some of the components of a complete solution will not make 
them go away or reduce their needs

• Complete solution view allows expectations to be managed 
• Requirements never capture the detail of the complete solution
• Requirements are just one set of constraints imposed on the solution 

design 



REQUIREMENTS

Any Complete Solution Consists of:
• Zero or more of {Changes to Existing Systems}
• Zero or more of {New Custom Developed Applications} 
• Zero or more of {Information Storage Facilities} 
• Zero or more of {Acquired and Customized Software Products
• Zero or more of {System Integrations/Data Transfers/Exchanges} 
• Zero or more of {Changes to Existing Business Processes} 
• Zero or more of {New Business Processes} 
• Zero or more of {Organizational Changes} 
• Zero or more of {Reporting and Analysis Facilities}
• Zero or more of {Existing Data Conversions/Migrations}
• …



REQUIREMENTS

Functional requirements 
Statements of services the system should provide, how the system should 
react to particular inputs and how the system should behave in particular 
situations. 

Non-functional requirements 
constraints on the services or functions offered by the system such as timing 
constraints, constraints on the development process, standards, etc. 

Domain requirements 
Requirements that come from the application domain of the system and that 
reflect characteristics of that domain 



REQUIREMENTS

Functional requirements 
Describe functionality or system services 

Depend on the type of software, expected users and the type of system 
where the software is used 

Functional user requirements may be high-level statements of what the 
system should do but functional system requirements should describe the 
system services in detail 

Examples of functional requirements 
The user shall be able to search either all of the initial set of databases or 
select a subset from it. 

The system shall provide appropriate viewers for the user to read documents 
in the document store. 



REQUIREMENT

Non Functional requirements

A non-functional requirement is a requirement that specifies criteria that can 
be used to judge the operation of a system, rather than specific behaviors. 

Non functional requirements are very specific to the architecture and play an 
important role for the effective result and success of the entire application.



NON FUNCTIONAL REQUIREMENT

Accessibility
Availability (see service level agreement)
Backup
Capacity, current and forecast
Certification
Compliance
Configuration management
Dependency on other parties
Documentation
Disaster recovery
Efficiency (resource consumption for given load)
Effectiveness (resulting performance in relation to effort)
Emotional factors (like fun or absorbing or has "Wow! Factor")
Environmental protection
Escrow
Exploitability
Extensibility (Failure management
Fault tolerance (e.g. Operational System Monitoring, Measuring, 
and Management)
Legal and licensing issues or patent-infringement-avoidability
Interoperability
Maintainability
Modifiability
Network topology

Operability
Open source
Performance / response time (performance engineering)
Platform compatibility
Price
Privacy
Portability
Quality
Recovery / recoverability (e.g. mean time to recovery - MTTR)
Reliability (e.g. mean time between failures - MTBF, or availability)
Reporting
Resilience
Resource constraints (processor speed, memory, disk space, 
network bandwidth, etc.)
Response time
Reusability
Robustness
Safety or Factor of safety
Scalability (horizontal, vertical)
Security
Software, tools, standards etc. Compatibility
Stability
Supportability
Testability
Transparency
Usability by target user community



REQUIREMENT DELIVERABLES

ISO/IEC/IEEE 29148:2011 Systems and Software Engineering – Life 
Cycle Processes – Requirements Engineering
Proposes five key deliverables:

1.Stakeholder Requirements Specification (StRS) Document 
2.System Requirements Specification (SyRS) Document 
3.Software Requirements Specification (SRS) Document 
4.System Operational Concept (OpsCon) Document 
5.Concept of Operations (ConOps) Document

http://www.iso.org/iso/catalogue_detail.htm?csnumber=45171



REQUIREMENT DELIVERABLES

1. Stakeholder Requirements Specification (StRS) Document

• Business Purpose 
• Business Scope 
• Business Overview 
• Stakeholders
• Business Environment
• Goal And Objective
• Business Model
• Information Environment
• Business Processes



REQUIREMENT DELIVERABLES

2.System Requirements Specification (SyRS) Document

• System Scope
• System Overview
• System Context
• System Functions
• User Characteristics
• Functional Requirements
• Usability Requirements 
• Performance Requirements
• System Interfaces
• System Operations
• …



REQUIREMENT DELIVERABLES

3. Software Requirements Specification (SRS) Document

• Product Perspective
• System Interfaces 
• User Interfaces
• Hardware Interfaces 
• Software Interfaces
• Communications Interfaces
• Memory Constraints − Operations
• Site Adaptation Requirements 
• Product Functions
• Product Functions



REQUIREMENT DELIVERABLES

4. System Operational Concept (OpsCon) Document

• System Overview
• Referenced Documents
• Current System Or Situation 
• Background, Objectives, And Scope 
• Profiles Of User Classes 
• Interactions Among User Classes 
• Concepts For The Proposed System − Background, Objectives, And 

Scope − Operational Policies And Constraints − Description Of The 
Proposed System − Modes Of Operation − User Classes And Other 
Involved Personnel

• Organisational Structure



REQUIREMENT DELIVERABLES

5. Concept of Operations (ConOps) Document

• Strategic Plan
• Effectiveness 
• Overall Operation − Context − Systems − Organisational Unit 
• Governance − Governance Policies − Organisation − Investment 

Plan − Information Asset Management − Security − Business 
Continuity Plan



REQUIREMENT TYPES

User requirements 
Statements in natural language plus diagrams of the services the 
system provides and its operational constraints. Written for customers 

System requirements 
A structured document setting out detailed descriptions of the system 
services. Written as a contract between client and contractor 

Software specification 
A detailed software description which can serve as a basis for a design 
or implementation. Written for developers 



REQUIREMENT GATHERING

Requirements can be gathered in different ways:

• Structured brainstorming workshops 
• Interviews and questionnaires 
• Technical, operational, and/or strategy documentation review 
• Simulations and visualizations 
• Prototyping 
• Modeling
• Quality function deployment (QFD)
• Use case diagrams (OMG 2010) 
• Activity diagrams (OMG 2010) 
• Functional flow 


