
Input/Output

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Input/Output 142 / 176

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 176

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 176

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 176

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 176

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 176

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 176

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 176

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 176

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 176

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 176

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 176

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 176

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 176

Opening files. . .

A file is opened and a file descriptor is obtained with the open() system call:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>

i n t open (c o n s t c h a r ∗name , i n t f l a g s) ;
i n t open (c o n s t c h a r ∗name , i n t f l a g s , mode t mode) ;

Example:

i n t f d ;
f d = open (”/home/ p i t o n / p o t i o n s ” , O RDONLY) ;
i f (fd <0) {

// E r r o r !
}

Prof. Michele Loreti Input/Output 145 / 176

Opening files. . .

A file is opened and a file descriptor is obtained with the open() system call:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>

i n t open (c o n s t c h a r ∗name , i n t f l a g s) ;
i n t open (c o n s t c h a r ∗name , i n t f l a g s , mode t mode) ;

Example:

i n t f d ;
f d = open (”/home/ p i t o n / p o t i o n s ” , O RDONLY) ;
i f (fd <0) {

// E r r o r !
}

Prof. Michele Loreti Input/Output 145 / 176

Opening files. . .

A file is opened and a file descriptor is obtained with the open() system call:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>

i n t open (c o n s t c h a r ∗name , i n t f l a g s) ;
i n t open (c o n s t c h a r ∗name , i n t f l a g s , mode t mode) ;

Example:

i n t f d ;
f d = open (”/home/ p i t o n / p o t i o n s ” , O RDONLY) ;
i f (fd <0) {

// E r r o r !
}

Prof. Michele Loreti Input/Output 145 / 176

Opening flags. . .

flags argument may be bitwise-ORed with zero or more of the following
values, modifying the behavior of the open request.

File status flags fall into three categories:

� File Access Modes, specify what type of access is allowed to the file
(reading, writing, or both).

� Open-time Flags, control details of what open will do.

� I/O Operating Modes, affect how operations such as read and write
are done.

Prof. Michele Loreti Input/Output 146 / 176

Opening flags. . .

flags argument may be bitwise-ORed with zero or more of the following
values, modifying the behavior of the open request.

File status flags fall into three categories:

� File Access Modes, specify what type of access is allowed to the file
(reading, writing, or both).

� Open-time Flags, control details of what open will do.

� I/O Operating Modes, affect how operations such as read and write
are done.

Prof. Michele Loreti Input/Output 146 / 176

Opening flags. . .

flags argument may be bitwise-ORed with zero or more of the following
values, modifying the behavior of the open request.

File status flags fall into three categories:

� File Access Modes, specify what type of access is allowed to the file
(reading, writing, or both).

� Open-time Flags, control details of what open will do.

� I/O Operating Modes, affect how operations such as read and write
are done.

Prof. Michele Loreti Input/Output 146 / 176

Opening flags. . .

flags argument may be bitwise-ORed with zero or more of the following
values, modifying the behavior of the open request.

File status flags fall into three categories:

� File Access Modes, specify what type of access is allowed to the file
(reading, writing, or both).

� Open-time Flags, control details of what open will do.

� I/O Operating Modes, affect how operations such as read and write
are done.

Prof. Michele Loreti Input/Output 146 / 176

Opening flags. . .

File Access Modes: The file access modes allow a file descriptor to be
used for reading, writing, or both:

� O RDONLY Open the file for read access.

� O WRONLY Open the file for write access.

� O RDWR Open the file for both reading and writing.

Open-time Flags: The open-time flags specify options affecting how open
will behave. There are two sorts of options specified by open-time flags:

� File name translation flags affect how open looks up the file name to
locate the file, and whether the file can be created.

� Open-time action flags specify extra operations that open will
perform on the file once it is open.

Prof. Michele Loreti Input/Output 147 / 176

Opening flags. . .

File Access Modes: The file access modes allow a file descriptor to be
used for reading, writing, or both:

� O RDONLY Open the file for read access.

� O WRONLY Open the file for write access.

� O RDWR Open the file for both reading and writing.

Open-time Flags: The open-time flags specify options affecting how open
will behave. There are two sorts of options specified by open-time flags:

� File name translation flags affect how open looks up the file name to
locate the file, and whether the file can be created.

� Open-time action flags specify extra operations that open will
perform on the file once it is open.

Prof. Michele Loreti Input/Output 147 / 176

Opening flags. . .

File Access Modes: The file access modes allow a file descriptor to be
used for reading, writing, or both:

� O RDONLY Open the file for read access.

� O WRONLY Open the file for write access.

� O RDWR Open the file for both reading and writing.

Open-time Flags: The open-time flags specify options affecting how open
will behave. There are two sorts of options specified by open-time flags:

� File name translation flags affect how open looks up the file name to
locate the file, and whether the file can be created.

� Open-time action flags specify extra operations that open will
perform on the file once it is open.

Prof. Michele Loreti Input/Output 147 / 176

Opening flags. . .

File Access Modes: The file access modes allow a file descriptor to be
used for reading, writing, or both:

� O RDONLY Open the file for read access.

� O WRONLY Open the file for write access.

� O RDWR Open the file for both reading and writing.

Open-time Flags: The open-time flags specify options affecting how open
will behave. There are two sorts of options specified by open-time flags:

� File name translation flags affect how open looks up the file name to
locate the file, and whether the file can be created.

� Open-time action flags specify extra operations that open will
perform on the file once it is open.

Prof. Michele Loreti Input/Output 147 / 176

Opening flags. . .

File Access Modes: The file access modes allow a file descriptor to be
used for reading, writing, or both:

� O RDONLY Open the file for read access.

� O WRONLY Open the file for write access.

� O RDWR Open the file for both reading and writing.

Open-time Flags: The open-time flags specify options affecting how open
will behave. There are two sorts of options specified by open-time flags:

� File name translation flags affect how open looks up the file name to
locate the file, and whether the file can be created.

� Open-time action flags specify extra operations that open will
perform on the file once it is open.

Prof. Michele Loreti Input/Output 147 / 176

Opening flags. . .

File Access Modes: The file access modes allow a file descriptor to be
used for reading, writing, or both:

� O RDONLY Open the file for read access.

� O WRONLY Open the file for write access.

� O RDWR Open the file for both reading and writing.

Open-time Flags: The open-time flags specify options affecting how open
will behave.

There are two sorts of options specified by open-time flags:

� File name translation flags affect how open looks up the file name to
locate the file, and whether the file can be created.

� Open-time action flags specify extra operations that open will
perform on the file once it is open.

Prof. Michele Loreti Input/Output 147 / 176

Opening flags. . .

File Access Modes: The file access modes allow a file descriptor to be
used for reading, writing, or both:

� O RDONLY Open the file for read access.

� O WRONLY Open the file for write access.

� O RDWR Open the file for both reading and writing.

Open-time Flags: The open-time flags specify options affecting how open
will behave. There are two sorts of options specified by open-time flags:

� File name translation flags affect how open looks up the file name to
locate the file, and whether the file can be created.

� Open-time action flags specify extra operations that open will
perform on the file once it is open.

Prof. Michele Loreti Input/Output 147 / 176

Opening flags. . .
Open-time Flags

Name translation flags:

� O CREAT: The file will be created if it doesn’t already exist.

� O EXCL: Is used in combination with O CREAT and let open fails if the
specified file already exists.

� O NONBLOCK: Prevents open from blocking for a ”long time” to open
the file (used for devices such as serial ports).

� O NOCTTY: If the named file is a terminal device, don’t make it the
controlling terminal for the process.

Open-time action flags:

� O TRUNC: Truncate the file to zero length (This option is only useful
for regular files).

Prof. Michele Loreti Input/Output 148 / 176

Opening flags. . .
Open-time Flags

Name translation flags:

� O CREAT: The file will be created if it doesn’t already exist.

� O EXCL: Is used in combination with O CREAT and let open fails if the
specified file already exists.

� O NONBLOCK: Prevents open from blocking for a ”long time” to open
the file (used for devices such as serial ports).

� O NOCTTY: If the named file is a terminal device, don’t make it the
controlling terminal for the process.

Open-time action flags:

� O TRUNC: Truncate the file to zero length (This option is only useful
for regular files).

Prof. Michele Loreti Input/Output 148 / 176

Opening flags. . .
Open-time Flags

Name translation flags:

� O CREAT: The file will be created if it doesn’t already exist.

� O EXCL: Is used in combination with O CREAT and let open fails if the
specified file already exists.

� O NONBLOCK: Prevents open from blocking for a ”long time” to open
the file (used for devices such as serial ports).

� O NOCTTY: If the named file is a terminal device, don’t make it the
controlling terminal for the process.

Open-time action flags:

� O TRUNC: Truncate the file to zero length (This option is only useful
for regular files).

Prof. Michele Loreti Input/Output 148 / 176

Opening flags. . .
Open-time Flags

Name translation flags:

� O CREAT: The file will be created if it doesn’t already exist.

� O EXCL: Is used in combination with O CREAT and let open fails if the
specified file already exists.

� O NONBLOCK: Prevents open from blocking for a ”long time” to open
the file (used for devices such as serial ports).

� O NOCTTY: If the named file is a terminal device, don’t make it the
controlling terminal for the process.

Open-time action flags:

� O TRUNC: Truncate the file to zero length (This option is only useful
for regular files).

Prof. Michele Loreti Input/Output 148 / 176

Opening flags. . .
Open-time Flags

Name translation flags:

� O CREAT: The file will be created if it doesn’t already exist.

� O EXCL: Is used in combination with O CREAT and let open fails if the
specified file already exists.

� O NONBLOCK: Prevents open from blocking for a ”long time” to open
the file (used for devices such as serial ports).

� O NOCTTY: If the named file is a terminal device, don’t make it the
controlling terminal for the process.

Open-time action flags:

� O TRUNC: Truncate the file to zero length (This option is only useful
for regular files).

Prof. Michele Loreti Input/Output 148 / 176

Opening flags. . .
Open-time Flags

Name translation flags:

� O CREAT: The file will be created if it doesn’t already exist.

� O EXCL: Is used in combination with O CREAT and let open fails if the
specified file already exists.

� O NONBLOCK: Prevents open from blocking for a ”long time” to open
the file (used for devices such as serial ports).

� O NOCTTY: If the named file is a terminal device, don’t make it the
controlling terminal for the process.

Open-time action flags:

� O TRUNC: Truncate the file to zero length (This option is only useful
for regular files).

Prof. Michele Loreti Input/Output 148 / 176

Opening modes. . .

Parameter mode provides the permissions of the newly created file.

It is composed by an octal value with three digits represeting:

� User permission;

� Group permission;

� Others permiossion.

Each digit consists of three bits rwx indicating read, write and exec
permissions.

Prof. Michele Loreti Input/Output 149 / 176

Opening modes. . .

Parameter mode provides the permissions of the newly created file.

It is composed by an octal value with three digits represeting:

� User permission;

� Group permission;

� Others permiossion.

Each digit consists of three bits rwx indicating read, write and exec
permissions.

Prof. Michele Loreti Input/Output 149 / 176

Opening modes. . .

Parameter mode provides the permissions of the newly created file.

It is composed by an octal value with three digits represeting:

� User permission;

� Group permission;

� Others permiossion.

Each digit consists of three bits rwx indicating read, write and exec
permissions.

Prof. Michele Loreti Input/Output 149 / 176

Example. . .

i n t f d ;
f d = open (f i l e , O WRONLY | O CREAT | O TRUNC, 0664) ;
i f (f d == −1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 150 / 176

Creating a file. . .

The combination of O WRONLY | O CREAT | O TRUNC is so common that a
system call exists to provide just that behaviour:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>
i n t c r e a t (c o n s t c h a r ∗name , mode t mode) ;

This is not a typo!

i n t f d ;
f d = c r e a t (f i l e n a m e , 0644) ;
i f (f d == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 151 / 176

Creating a file. . .

The combination of O WRONLY | O CREAT | O TRUNC is so common that a
system call exists to provide just that behaviour:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>
i n t c r e a t (c o n s t c h a r ∗name , mode t mode) ;

This is not a typo!

i n t f d ;
f d = c r e a t (f i l e n a m e , 0644) ;
i f (f d == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 151 / 176

Creating a file. . .

The combination of O WRONLY | O CREAT | O TRUNC is so common that a
system call exists to provide just that behaviour:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>
i n t c r e a t (c o n s t c h a r ∗name , mode t mode) ;

This is not a typo!

i n t f d ;
f d = c r e a t (f i l e n a m e , 0644) ;
i f (f d == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 151 / 176

Creating a file. . .

The combination of O WRONLY | O CREAT | O TRUNC is so common that a
system call exists to provide just that behaviour:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>
i n t c r e a t (c o n s t c h a r ∗name , mode t mode) ;

This is not a typo!

i n t f d ;
f d = c r e a t (f i l e n a m e , 0644) ;
i f (f d == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 151 / 176

Reading from files:

The most basic mechanism used for reading is the read() system call:

#i n c l u d e <u n i s t d . h>
s s i z e t r e a d (i n t fd , v o i d ∗buf , s i z e t l e n) ;

ssize t is used to represent the sizes of blocks that can be read or written
in a single operation. It is similar to size t , but must be a signed type.

Prof. Michele Loreti Input/Output 152 / 176

Reading from files:

The most basic mechanism used for reading is the read() system call:

#i n c l u d e <u n i s t d . h>
s s i z e t r e a d (i n t fd , v o i d ∗buf , s i z e t l e n) ;

ssize t is used to represent the sizes of blocks that can be read or written
in a single operation. It is similar to size t , but must be a signed type.

Prof. Michele Loreti Input/Output 152 / 176

Reading from files:

The most basic mechanism used for reading is the read() system call:

#i n c l u d e <u n i s t d . h>
s s i z e t r e a d (i n t fd , v o i d ∗buf , s i z e t l e n) ;

ssize t is used to represent the sizes of blocks that can be read or written
in a single operation. It is similar to size t , but must be a signed type.

Prof. Michele Loreti Input/Output 152 / 176

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 153 / 176

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 153 / 176

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 153 / 176

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 153 / 176

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;

� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 153 / 176

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 153 / 176

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);

� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 153 / 176

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);

� . . .

Prof. Michele Loreti Input/Output 153 / 176

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 153 / 176

Example: reading all bytes

s s i z e t r e t ;
w h i l e (l e n != 0 && (r e t = r e a d (fd , buf , l e n)) != 0) {

i f (r e t ==−1) {
i f (e r r n o == EINTR)

c o n t i n u e ;
p e r r o r (” r e a d ”) ;

b r e a k ;
}

l e n −= r e t ;
buf += r e t ;

}

Prof. Michele Loreti Input/Output 154 / 176

Writing on files

The most basic and common system call used for writing is write ():

#i n c l u d e <u n i s t d . h>
s s i z e t w r i t e (i n t fd , c o n s t v o i d ∗buf , s i z e t count) ;

A call to write () writes up to count bytes starting at buf to the current
position of the file referenced by the file descriptor fd.

Example:

c o n s t c h a r ∗ buf = ”My s h i p i s s o l i d ! ” ;
s s i z e t nr ;
/∗ w r i t e t he s t r i n g i n ’ buf ’ to ’ f d ’ ∗/
nr = w r i t e (fd , buf , s t r l e n (buf)) ;
i f (nr == −1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 155 / 176

Writing on files

The most basic and common system call used for writing is write ():

#i n c l u d e <u n i s t d . h>
s s i z e t w r i t e (i n t fd , c o n s t v o i d ∗buf , s i z e t count) ;

A call to write () writes up to count bytes starting at buf to the current
position of the file referenced by the file descriptor fd.

Example:

c o n s t c h a r ∗ buf = ”My s h i p i s s o l i d ! ” ;
s s i z e t nr ;
/∗ w r i t e t he s t r i n g i n ’ buf ’ to ’ f d ’ ∗/
nr = w r i t e (fd , buf , s t r l e n (buf)) ;
i f (nr == −1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 155 / 176

Writing on files

The most basic and common system call used for writing is write ():

#i n c l u d e <u n i s t d . h>
s s i z e t w r i t e (i n t fd , c o n s t v o i d ∗buf , s i z e t count) ;

A call to write () writes up to count bytes starting at buf to the current
position of the file referenced by the file descriptor fd.

Example:

c o n s t c h a r ∗ buf = ”My s h i p i s s o l i d ! ” ;
s s i z e t nr ;
/∗ w r i t e t he s t r i n g i n ’ buf ’ to ’ f d ’ ∗/
nr = w r i t e (fd , buf , s t r l e n (buf)) ;
i f (nr == −1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 155 / 176

Writing on files

The most basic and common system call used for writing is write ():

#i n c l u d e <u n i s t d . h>
s s i z e t w r i t e (i n t fd , c o n s t v o i d ∗buf , s i z e t count) ;

A call to write () writes up to count bytes starting at buf to the current
position of the file referenced by the file descriptor fd.

Example:

c o n s t c h a r ∗ buf = ”My s h i p i s s o l i d ! ” ;
s s i z e t nr ;
/∗ w r i t e t he s t r i n g i n ’ buf ’ to ’ f d ’ ∗/
nr = w r i t e (fd , buf , s t r l e n (buf)) ;
i f (nr == −1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 155 / 176

Append mode. . .

When fd is opened in append mode (via O APPEND), writes do not occur
at the file descriptor’s current file position. Instead, they occur at the
current end of the file.

Prof. Michele Loreti Input/Output 156 / 176

Behaviour of write

When a call to write () returns, the kernel has copied the data from the
supplied buffer into a kernel buffer, but there is no guarantee that the data
has been written out to its intended destination.

When a user-space application issues a write () system call, the Linux kernel
performs a few checks and then simply copies the data into a buffer.

Later, in the background, the kernel gathers up all of the dirty buffers,
which are buffers that contain data newer than what is on disk, sorts them
optimally, and writes them out to disk (a process known as writeback).

This allows write calls to occur relatively fast, returning almost
immediately. It also allows the kernel to defer writes to more idle periods
and batch many writes together.

Prof. Michele Loreti Input/Output 157 / 176

Behaviour of write

When a call to write () returns, the kernel has copied the data from the
supplied buffer into a kernel buffer, but there is no guarantee that the data
has been written out to its intended destination.

When a user-space application issues a write () system call, the Linux kernel
performs a few checks and then simply copies the data into a buffer.

Later, in the background, the kernel gathers up all of the dirty buffers,
which are buffers that contain data newer than what is on disk, sorts them
optimally, and writes them out to disk (a process known as writeback).

This allows write calls to occur relatively fast, returning almost
immediately. It also allows the kernel to defer writes to more idle periods
and batch many writes together.

Prof. Michele Loreti Input/Output 157 / 176

Behaviour of write

When a call to write () returns, the kernel has copied the data from the
supplied buffer into a kernel buffer, but there is no guarantee that the data
has been written out to its intended destination.

When a user-space application issues a write () system call, the Linux kernel
performs a few checks and then simply copies the data into a buffer.

Later, in the background, the kernel gathers up all of the dirty buffers,
which are buffers that contain data newer than what is on disk, sorts them
optimally, and writes them out to disk (a process known as writeback).

This allows write calls to occur relatively fast, returning almost
immediately. It also allows the kernel to defer writes to more idle periods
and batch many writes together.

Prof. Michele Loreti Input/Output 157 / 176

Behaviour of write

When a call to write () returns, the kernel has copied the data from the
supplied buffer into a kernel buffer, but there is no guarantee that the data
has been written out to its intended destination.

When a user-space application issues a write () system call, the Linux kernel
performs a few checks and then simply copies the data into a buffer.

Later, in the background, the kernel gathers up all of the dirty buffers,
which are buffers that contain data newer than what is on disk, sorts them
optimally, and writes them out to disk (a process known as writeback).

This allows write calls to occur relatively fast, returning almost
immediately. It also allows the kernel to defer writes to more idle periods
and batch many writes together.

Prof. Michele Loreti Input/Output 157 / 176

Synchronised I/O

The simplest method of ensuring that data has reached the disk is via the
fsync () system call:

#i n c l u d e <u n i s t d . h>

i n t f s y n c (i n t f d) ;

A call to fsync () ensures that all dirty data associated with the file mapped
by the file descriptor fd are written back to disk. The file descriptor fd

must be open for writing.

The call writes back both data and metadata in the inode. It will not
return until the hard drive says that the data and metadata are on the disk.

Prof. Michele Loreti Input/Output 158 / 176

Synchronised I/O

The simplest method of ensuring that data has reached the disk is via the
fsync () system call:

#i n c l u d e <u n i s t d . h>

i n t f s y n c (i n t f d) ;

A call to fsync () ensures that all dirty data associated with the file mapped
by the file descriptor fd are written back to disk.

The file descriptor fd

must be open for writing.

The call writes back both data and metadata in the inode. It will not
return until the hard drive says that the data and metadata are on the disk.

Prof. Michele Loreti Input/Output 158 / 176

Synchronised I/O

The simplest method of ensuring that data has reached the disk is via the
fsync () system call:

#i n c l u d e <u n i s t d . h>

i n t f s y n c (i n t f d) ;

A call to fsync () ensures that all dirty data associated with the file mapped
by the file descriptor fd are written back to disk. The file descriptor fd

must be open for writing.

The call writes back both data and metadata in the inode. It will not
return until the hard drive says that the data and metadata are on the disk.

Prof. Michele Loreti Input/Output 158 / 176

Synchronised I/O

The simplest method of ensuring that data has reached the disk is via the
fsync () system call:

#i n c l u d e <u n i s t d . h>

i n t f s y n c (i n t f d) ;

A call to fsync () ensures that all dirty data associated with the file mapped
by the file descriptor fd are written back to disk. The file descriptor fd

must be open for writing.

The call writes back both data and metadata in the inode. It will not
return until the hard drive says that the data and metadata are on the disk.

Prof. Michele Loreti Input/Output 158 / 176

Synchronised I/O

Linux also provides the system call fdatasync():

#i n c l u d e <u n i s t d . h>

i n t f d a t a s y n c (i n t f d) ;

This system call does the same thing as fsync (), except that it only flushes
data and metadata required to properly access the file in the future.

Example: a call to fdatasync() will flush a file’s size (needed to read the
file correctly). The call does not guarantee that nonessential metadata
(modification timestamp) is synchronised to disk.

Remark: fdatasync() is therefore potentially faster than fsync ().

Prof. Michele Loreti Input/Output 159 / 176

Synchronised I/O

Linux also provides the system call fdatasync():

#i n c l u d e <u n i s t d . h>

i n t f d a t a s y n c (i n t f d) ;

This system call does the same thing as fsync (), except that it only flushes
data and metadata required to properly access the file in the future.

Example: a call to fdatasync() will flush a file’s size (needed to read the
file correctly). The call does not guarantee that nonessential metadata
(modification timestamp) is synchronised to disk.

Remark: fdatasync() is therefore potentially faster than fsync ().

Prof. Michele Loreti Input/Output 159 / 176

Synchronised I/O

Linux also provides the system call fdatasync():

#i n c l u d e <u n i s t d . h>

i n t f d a t a s y n c (i n t f d) ;

This system call does the same thing as fsync (), except that it only flushes
data and metadata required to properly access the file in the future.

Example: a call to fdatasync() will flush a file’s size (needed to read the
file correctly). The call does not guarantee that nonessential metadata
(modification timestamp) is synchronised to disk.

Remark: fdatasync() is therefore potentially faster than fsync ().

Prof. Michele Loreti Input/Output 159 / 176

Synchronised I/O

Linux also provides the system call fdatasync():

#i n c l u d e <u n i s t d . h>

i n t f d a t a s y n c (i n t f d) ;

This system call does the same thing as fsync (), except that it only flushes
data and metadata required to properly access the file in the future.

Example: a call to fdatasync() will flush a file’s size (needed to read the
file correctly). The call does not guarantee that nonessential metadata
(modification timestamp) is synchronised to disk.

Remark: fdatasync() is therefore potentially faster than fsync ().

Prof. Michele Loreti Input/Output 159 / 176

Synchronised I/O

Less optimal, but wider in scope, the sync() system call is provided for
synchronising all buffers to disk:

#i n c l u d e <u n i s t d . h>

v o i d sy nc (v o i d) ;

The function always succeeds and, upon return, all buffers—both data and
metadata—are guaranteed to reside on disk.

The standards only requires that sync() initiates the process of committing
all buffers to disk. Linux, however, does wait until all buffers are
committed.

The O SYNC flag may be passed to open(), indicating that all I/O on the
file should be synchronised.

Prof. Michele Loreti Input/Output 160 / 176

Synchronised I/O

Less optimal, but wider in scope, the sync() system call is provided for
synchronising all buffers to disk:

#i n c l u d e <u n i s t d . h>

v o i d sy nc (v o i d) ;

The function always succeeds and, upon return, all buffers—both data and
metadata—are guaranteed to reside on disk.

The standards only requires that sync() initiates the process of committing
all buffers to disk. Linux, however, does wait until all buffers are
committed.

The O SYNC flag may be passed to open(), indicating that all I/O on the
file should be synchronised.

Prof. Michele Loreti Input/Output 160 / 176

Synchronised I/O

Less optimal, but wider in scope, the sync() system call is provided for
synchronising all buffers to disk:

#i n c l u d e <u n i s t d . h>

v o i d sy nc (v o i d) ;

The function always succeeds and, upon return, all buffers—both data and
metadata—are guaranteed to reside on disk.

The standards only requires that sync() initiates the process of committing
all buffers to disk.

Linux, however, does wait until all buffers are
committed.

The O SYNC flag may be passed to open(), indicating that all I/O on the
file should be synchronised.

Prof. Michele Loreti Input/Output 160 / 176

Synchronised I/O

Less optimal, but wider in scope, the sync() system call is provided for
synchronising all buffers to disk:

#i n c l u d e <u n i s t d . h>

v o i d sy nc (v o i d) ;

The function always succeeds and, upon return, all buffers—both data and
metadata—are guaranteed to reside on disk.

The standards only requires that sync() initiates the process of committing
all buffers to disk. Linux, however, does wait until all buffers are
committed.

The O SYNC flag may be passed to open(), indicating that all I/O on the
file should be synchronised.

Prof. Michele Loreti Input/Output 160 / 176

Synchronised I/O

Less optimal, but wider in scope, the sync() system call is provided for
synchronising all buffers to disk:

#i n c l u d e <u n i s t d . h>

v o i d sy nc (v o i d) ;

The function always succeeds and, upon return, all buffers—both data and
metadata—are guaranteed to reside on disk.

The standards only requires that sync() initiates the process of committing
all buffers to disk. Linux, however, does wait until all buffers are
committed.

The O SYNC flag may be passed to open(), indicating that all I/O on the
file should be synchronised.

Prof. Michele Loreti Input/Output 160 / 176

Closing files

After a program has finished working with a file descriptor, it can unmap
the file descriptor from the associated file via the close() system call:

#i n c l u d e <u n i s t d . h>

i n t c l o s e (i n t f d) ;

The given file descriptor is then no longer valid, and the kernel is free to
reuse it as the return value to a subsequent open() or creat () call.

Prof. Michele Loreti Input/Output 161 / 176

Closing files

After a program has finished working with a file descriptor, it can unmap
the file descriptor from the associated file via the close() system call:

#i n c l u d e <u n i s t d . h>

i n t c l o s e (i n t f d) ;

The given file descriptor is then no longer valid, and the kernel is free to
reuse it as the return value to a subsequent open() or creat () call.

Prof. Michele Loreti Input/Output 161 / 176

Seeking

Normally, I/O occurs linearly through a file, and the implicit updates to the
file position caused by reads and writes are all the seeking that is needed.

Some applications, however, want to jump around in a file, providing
random rather than linear access.

The lseek () system call is provided to set the file position of a file
descriptor to a given value.

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <u n i s t d . h>

o f f t l s e e k (i n t fd , o f f t pos , i n t o r i g i n) ;

Prof. Michele Loreti Input/Output 162 / 176

Seeking

Normally, I/O occurs linearly through a file, and the implicit updates to the
file position caused by reads and writes are all the seeking that is needed.

Some applications, however, want to jump around in a file, providing
random rather than linear access.

The lseek () system call is provided to set the file position of a file
descriptor to a given value.

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <u n i s t d . h>

o f f t l s e e k (i n t fd , o f f t pos , i n t o r i g i n) ;

Prof. Michele Loreti Input/Output 162 / 176

Seeking

Normally, I/O occurs linearly through a file, and the implicit updates to the
file position caused by reads and writes are all the seeking that is needed.

Some applications, however, want to jump around in a file, providing
random rather than linear access.

The lseek () system call is provided to set the file position of a file
descriptor to a given value.

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <u n i s t d . h>

o f f t l s e e k (i n t fd , o f f t pos , i n t o r i g i n) ;

Prof. Michele Loreti Input/Output 162 / 176

Seeking

The behavior of lseek () depends on the origin argument, which can be one
of the following:

� SEEK CUR: The current file position of fd is set to its current value
plus pos, which can be negative, zero, or positive.

� SEEK END: The current file position of fd is set to the current length
of the file plus pos, which can be negative, zero, or positive.

� SEEK SET: The current file position of fd is set to pos.

Prof. Michele Loreti Input/Output 163 / 176

Seeking

The behavior of lseek () depends on the origin argument, which can be one
of the following:

� SEEK CUR: The current file position of fd is set to its current value
plus pos, which can be negative, zero, or positive.

� SEEK END: The current file position of fd is set to the current length
of the file plus pos, which can be negative, zero, or positive.

� SEEK SET: The current file position of fd is set to pos.

Prof. Michele Loreti Input/Output 163 / 176

Seeking

The behavior of lseek () depends on the origin argument, which can be one
of the following:

� SEEK CUR: The current file position of fd is set to its current value
plus pos, which can be negative, zero, or positive.

� SEEK END: The current file position of fd is set to the current length
of the file plus pos, which can be negative, zero, or positive.

� SEEK SET: The current file position of fd is set to pos.

Prof. Michele Loreti Input/Output 163 / 176

To be continued. . .

Prof. Michele Loreti Input/Output 164 / 176

Buffered I/O

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Buffered I/O 165 / 176

Buffered I/O

A block is an abstraction representing the smallest unit of storage on a
filesystem.

Inside the kernel, all filesystem operations occur in terms of blocks.

Programs that have to issue many small I/O requests to regular files often
perform user-buffered I/O.

Prof. Michele Loreti Buffered I/O 166 / 176

Buffered I/O

A block is an abstraction representing the smallest unit of storage on a
filesystem.

Inside the kernel, all filesystem operations occur in terms of blocks.

Programs that have to issue many small I/O requests to regular files often
perform user-buffered I/O.

Prof. Michele Loreti Buffered I/O 166 / 176

Buffered I/O

A block is an abstraction representing the smallest unit of storage on a
filesystem.

Inside the kernel, all filesystem operations occur in terms of blocks.

Programs that have to issue many small I/O requests to regular files often
perform user-buffered I/O.

Prof. Michele Loreti Buffered I/O 166 / 176

Standard I/O

The standard C library provides the standard I/O library (often simply
called stdio), which in turn provides a platform-independent, user-buffering
solution.

StandardI/O routines do not operate directly on file descriptors. Instead,
they use their own unique identifier, known as the file pointer.

Inside the C library, the file pointer maps to a file descriptor. The file
pointer is represented by a pointer to the FILE typedef.

Prof. Michele Loreti Buffered I/O 167 / 176

Standard I/O

The standard C library provides the standard I/O library (often simply
called stdio), which in turn provides a platform-independent, user-buffering
solution.

StandardI/O routines do not operate directly on file descriptors. Instead,
they use their own unique identifier, known as the file pointer.

Inside the C library, the file pointer maps to a file descriptor. The file
pointer is represented by a pointer to the FILE typedef.

Prof. Michele Loreti Buffered I/O 167 / 176

Standard I/O

The standard C library provides the standard I/O library (often simply
called stdio), which in turn provides a platform-independent, user-buffering
solution.

StandardI/O routines do not operate directly on file descriptors. Instead,
they use their own unique identifier, known as the file pointer.

Inside the C library, the file pointer maps to a file descriptor. The file
pointer is represented by a pointer to the FILE typedef.

Prof. Michele Loreti Buffered I/O 167 / 176

Opening files. . .

Files are opened for reading or writing via fopen():

#i n c l u d e <s t d i o . h>

FILE ∗ f o pe n (c o n s t c h a r ∗path , c o n s t c h a r ∗mode) ;

This function opens the file path with the behaviour given by mode and
associates a new stream with it.

Prof. Michele Loreti Buffered I/O 168 / 176

Opening files. . .

Files are opened for reading or writing via fopen():

#i n c l u d e <s t d i o . h>

FILE ∗ f o pe n (c o n s t c h a r ∗path , c o n s t c h a r ∗mode) ;

This function opens the file path with the behaviour given by mode and
associates a new stream with it.

Prof. Michele Loreti Buffered I/O 168 / 176

Opening files. . .

Modes:

� r: Open the file for reading (stream positioned at the start of the file).

� r+: Open the file for both reading and writing (stream positioned at
the start of the file).

� w: Open the file for writing. If the file exists, it is truncated to zero
length.

� w+: Open the file for both reading and writing. If the file exists, it is
truncated to zero length. If the file does not exist, it is created
(stream positioned at the start of the file).

� a: Open the file for writing in append mode. The file is created if it
does not exist (stream positioned at the end of the file).

� a+: Open the file for both reading and writing in append mode. The
file is created if it does not exist (stream positioned at the end of the
file).

Prof. Michele Loreti Buffered I/O 169 / 176

Opening a Stream via File Descriptor

The function fdopen() converts an already open file descriptor (fd) to a
stream:

#i n c l u d e <s t d i o . h>

FILE ∗ fdopen (i n t fd , c o n s t c h a r ∗mode) ;

The possible modes are the same as for fopen() and must be compatible
with the modes originally used to open the file descriptor.

Once a file descriptor is converted to a stream, I/O should no longer be
directly performed on the file descriptor.

Prof. Michele Loreti Buffered I/O 170 / 176

Opening a Stream via File Descriptor

The function fdopen() converts an already open file descriptor (fd) to a
stream:

#i n c l u d e <s t d i o . h>

FILE ∗ fdopen (i n t fd , c o n s t c h a r ∗mode) ;

The possible modes are the same as for fopen() and must be compatible
with the modes originally used to open the file descriptor.

Once a file descriptor is converted to a stream, I/O should no longer be
directly performed on the file descriptor.

Prof. Michele Loreti Buffered I/O 170 / 176

Opening a Stream via File Descriptor

The function fdopen() converts an already open file descriptor (fd) to a
stream:

#i n c l u d e <s t d i o . h>

FILE ∗ fdopen (i n t fd , c o n s t c h a r ∗mode) ;

The possible modes are the same as for fopen() and must be compatible
with the modes originally used to open the file descriptor.

Once a file descriptor is converted to a stream, I/O should no longer be
directly performed on the file descriptor.

Prof. Michele Loreti Buffered I/O 170 / 176

Closing streams

The fclose () function closes a given stream:

#i n c l u d e <s t d i o . h>

i n t f c l o s e (FILE ∗ s t ream) ;

Any buffered and not-yet-written data is first flushed. On success, fclose ()

returns 0. On failure, it returns EOF and sets errno appropriately.

The fcloseall () function closes all streams associated with the current
process, including standard in, standard out, and standard error:

#d e f i n e GNU SOURCE
#i n c l u d e <s t d i o . h>

i n t f c l o s e a l l (v o i d) ;

Prof. Michele Loreti Buffered I/O 171 / 176

Closing streams

The fclose () function closes a given stream:

#i n c l u d e <s t d i o . h>

i n t f c l o s e (FILE ∗ s t ream) ;

Any buffered and not-yet-written data is first flushed. On success, fclose ()

returns 0. On failure, it returns EOF and sets errno appropriately.

The fcloseall () function closes all streams associated with the current
process, including standard in, standard out, and standard error:

#d e f i n e GNU SOURCE
#i n c l u d e <s t d i o . h>

i n t f c l o s e a l l (v o i d) ;

Prof. Michele Loreti Buffered I/O 171 / 176

Closing streams

The fclose () function closes a given stream:

#i n c l u d e <s t d i o . h>

i n t f c l o s e (FILE ∗ s t ream) ;

Any buffered and not-yet-written data is first flushed. On success, fclose ()

returns 0. On failure, it returns EOF and sets errno appropriately.

The fcloseall () function closes all streams associated with the current
process, including standard in, standard out, and standard error:

#d e f i n e GNU SOURCE
#i n c l u d e <s t d i o . h>

i n t f c l o s e a l l (v o i d) ;

Prof. Michele Loreti Buffered I/O 171 / 176

Reading from a stream

Reading a Character at a Time:

i n t f g e t c (FILE ∗ s t ream) ;

Putting the character back:

i n t ungetc (i n t c , FILE ∗ s t ream) ;

Reading Binary Data:

s i z e t f r e a d (v o i d ∗buf , s i z e t s i z e , s i z e t nr , FILE ∗ s t ream)
;

Prof. Michele Loreti Buffered I/O 172 / 176

Reading from a stream

Reading a Character at a Time:

i n t f g e t c (FILE ∗ s t ream) ;

Putting the character back:

i n t ungetc (i n t c , FILE ∗ s t ream) ;

Reading Binary Data:

s i z e t f r e a d (v o i d ∗buf , s i z e t s i z e , s i z e t nr , FILE ∗ s t ream)
;

Prof. Michele Loreti Buffered I/O 172 / 176

Reading from a stream

Reading a Character at a Time:

i n t f g e t c (FILE ∗ s t ream) ;

Putting the character back:

i n t ungetc (i n t c , FILE ∗ s t ream) ;

Reading Binary Data:

s i z e t f r e a d (v o i d ∗buf , s i z e t s i z e , s i z e t nr , FILE ∗ s t ream)
;

Prof. Michele Loreti Buffered I/O 172 / 176

Writing to a stream

Writing a Single Character:

i n t f p u t c (i n t c , FILE ∗ s t ream) ;

Writing a String of Characters:

i n t f p u t s (c o n s t c h a r ∗ s t r , FILE ∗ s t ream) ;

Writing Binary Data:

s i z e t f w r i t e (v o i d ∗buf , s i z e t s i z e , s i z e t nr , FILE ∗ s t ream)
;

Empty writing buffer:

i n t f f l u s h (FILE ∗ s t ream) ;

Prof. Michele Loreti Buffered I/O 173 / 176

Writing to a stream

Writing a Single Character:

i n t f p u t c (i n t c , FILE ∗ s t ream) ;

Writing a String of Characters:

i n t f p u t s (c o n s t c h a r ∗ s t r , FILE ∗ s t ream) ;

Writing Binary Data:

s i z e t f w r i t e (v o i d ∗buf , s i z e t s i z e , s i z e t nr , FILE ∗ s t ream)
;

Empty writing buffer:

i n t f f l u s h (FILE ∗ s t ream) ;

Prof. Michele Loreti Buffered I/O 173 / 176

Writing to a stream

Writing a Single Character:

i n t f p u t c (i n t c , FILE ∗ s t ream) ;

Writing a String of Characters:

i n t f p u t s (c o n s t c h a r ∗ s t r , FILE ∗ s t ream) ;

Writing Binary Data:

s i z e t f w r i t e (v o i d ∗buf , s i z e t s i z e , s i z e t nr , FILE ∗ s t ream)
;

Empty writing buffer:

i n t f f l u s h (FILE ∗ s t ream) ;

Prof. Michele Loreti Buffered I/O 173 / 176

Writing to a stream

Writing a Single Character:

i n t f p u t c (i n t c , FILE ∗ s t ream) ;

Writing a String of Characters:

i n t f p u t s (c o n s t c h a r ∗ s t r , FILE ∗ s t ream) ;

Writing Binary Data:

s i z e t f w r i t e (v o i d ∗buf , s i z e t s i z e , s i z e t nr , FILE ∗ s t ream)
;

Empty writing buffer:

i n t f f l u s h (FILE ∗ s t ream) ;

Prof. Michele Loreti Buffered I/O 173 / 176

Seeking a stream

The fseek () function, the most common of the standard I/O seeking:

i n t f s e e k (FILE ∗ stream , l o n g o f f s e t , i n t whence) ;

Alternatively, standard I/O provides fsetpos ():

i n t f s e t p o s (FILE ∗ stream , f p o s t ∗pos) ;

Standard I/O also provides rewind(), as a shortcut:

v o i d r e w i n d (FILE ∗ s t ream) ;

The invocation rewind(stream) resets the position back to the start of the
stream. It is equivalent to:

f s e e k (stream , 0 , SEEK SET) ;

Prof. Michele Loreti Buffered I/O 174 / 176

Seeking a stream

The fseek () function, the most common of the standard I/O seeking:

i n t f s e e k (FILE ∗ stream , l o n g o f f s e t , i n t whence) ;

Alternatively, standard I/O provides fsetpos ():

i n t f s e t p o s (FILE ∗ stream , f p o s t ∗pos) ;

Standard I/O also provides rewind(), as a shortcut:

v o i d r e w i n d (FILE ∗ s t ream) ;

The invocation rewind(stream) resets the position back to the start of the
stream. It is equivalent to:

f s e e k (stream , 0 , SEEK SET) ;

Prof. Michele Loreti Buffered I/O 174 / 176

Seeking a stream

The fseek () function, the most common of the standard I/O seeking:

i n t f s e e k (FILE ∗ stream , l o n g o f f s e t , i n t whence) ;

Alternatively, standard I/O provides fsetpos ():

i n t f s e t p o s (FILE ∗ stream , f p o s t ∗pos) ;

Standard I/O also provides rewind(), as a shortcut:

v o i d r e w i n d (FILE ∗ s t ream) ;

The invocation rewind(stream) resets the position back to the start of the
stream. It is equivalent to:

f s e e k (stream , 0 , SEEK SET) ;

Prof. Michele Loreti Buffered I/O 174 / 176

Excercise: Caesar cipher

In cryptography, a Caesar cipher, also known as Caesar’s cipher, the shift
cipher, Caesar’s code or Caesar shift, is one of the simplest and most
widely known encryption techniques.

It is a type of substitution cipher in which each letter in the plaintext is
replaced by a letter some fixed number of positions down the alphabet.

Example: CC (“Hello World!”, 5) = “Mjqqt Btwqi!”.

Exercise: Write a program cesar .c that encrypt/decrypt a file by using the
Caesar cipher.

Prof. Michele Loreti Buffered I/O 175 / 176

Excercise: Caesar cipher

In cryptography, a Caesar cipher, also known as Caesar’s cipher, the shift
cipher, Caesar’s code or Caesar shift, is one of the simplest and most
widely known encryption techniques.

It is a type of substitution cipher in which each letter in the plaintext is
replaced by a letter some fixed number of positions down the alphabet.

Example: CC (“Hello World!”, 5) = “Mjqqt Btwqi!”.

Exercise: Write a program cesar .c that encrypt/decrypt a file by using the
Caesar cipher.

Prof. Michele Loreti Buffered I/O 175 / 176

Excercise: Caesar cipher

In cryptography, a Caesar cipher, also known as Caesar’s cipher, the shift
cipher, Caesar’s code or Caesar shift, is one of the simplest and most
widely known encryption techniques.

It is a type of substitution cipher in which each letter in the plaintext is
replaced by a letter some fixed number of positions down the alphabet.

Example: CC (“Hello World!”, 5) = “Mjqqt Btwqi!”.

Exercise: Write a program cesar .c that encrypt/decrypt a file by using the
Caesar cipher.

Prof. Michele Loreti Buffered I/O 175 / 176

Excercise: Caesar cipher

In cryptography, a Caesar cipher, also known as Caesar’s cipher, the shift
cipher, Caesar’s code or Caesar shift, is one of the simplest and most
widely known encryption techniques.

It is a type of substitution cipher in which each letter in the plaintext is
replaced by a letter some fixed number of positions down the alphabet.

Example: CC (“Hello World!”, 5) = “Mjqqt Btwqi!”.

Exercise: Write a program cesar .c that encrypt/decrypt a file by using the
Caesar cipher.

Prof. Michele Loreti Buffered I/O 175 / 176

To be continued. . .

Prof. Michele Loreti Buffered I/O 176 / 176

