
Interprocess Communication

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Interprocess Communication 247 / 279

Interprocess Communication

Multiple processes may be running on a machine and maybe be controlled
(spawned by fork ()) by one of our programs.

In numerous applications there is clearly a need for these processes to
communicate with each exchanging data or control information. There are
a few methods which can accomplish this task.

We will consider some of the constructs that can be used to coordinate
computations of multiple process and let them exchange data.

Prof. Michele Loreti Interprocess Communication 248 / 279

Interprocess Communication

Multiple processes may be running on a machine and maybe be controlled
(spawned by fork ()) by one of our programs.

In numerous applications there is clearly a need for these processes to
communicate with each exchanging data or control information. There are
a few methods which can accomplish this task.

We will consider some of the constructs that can be used to coordinate
computations of multiple process and let them exchange data.

Prof. Michele Loreti Interprocess Communication 248 / 279

Interprocess Communication

Multiple processes may be running on a machine and maybe be controlled
(spawned by fork ()) by one of our programs.

In numerous applications there is clearly a need for these processes to
communicate with each exchanging data or control information. There are
a few methods which can accomplish this task.

We will consider some of the constructs that can be used to coordinate
computations of multiple process and let them exchange data.

Prof. Michele Loreti Interprocess Communication 248 / 279

Piping in a C program

Piping is a process where the output of one process is made the input of
another.

Pipes are used when we have two (or more) forked processes and we want
to communicate between them.

UNIX allows two ways of opening a pipe:

� formatted pipes;

� low-level pipes.

Prof. Michele Loreti Interprocess Communication 249 / 279

Piping in a C program

Piping is a process where the output of one process is made the input of
another.

Pipes are used when we have two (or more) forked processes and we want
to communicate between them.

UNIX allows two ways of opening a pipe:

� formatted pipes;

� low-level pipes.

Prof. Michele Loreti Interprocess Communication 249 / 279

Piping in a C program

Piping is a process where the output of one process is made the input of
another.

Pipes are used when we have two (or more) forked processes and we want
to communicate between them.

UNIX allows two ways of opening a pipe:

� formatted pipes;

� low-level pipes.

Prof. Michele Loreti Interprocess Communication 249 / 279

Formatted Piping

Function popen can be used to initiate pipe streams to or from a process.

#i n c l u d e <s t d i o . h>

FILE ∗popen (con s t cha r ∗command , con s t cha r ∗mode) ;

The popen() function shall execute the command specified by the string
command.

It shall create a pipe between the calling program and the executed
command, and shall return a pointer to a stream that can be used to
either read from or write to the pipe.

Prof. Michele Loreti Interprocess Communication 250 / 279

Formatted Piping

Function popen can be used to initiate pipe streams to or from a process.

#i n c l u d e <s t d i o . h>

FILE ∗popen (con s t cha r ∗command , con s t cha r ∗mode) ;

The popen() function shall execute the command specified by the string
command.

It shall create a pipe between the calling program and the executed
command, and shall return a pointer to a stream that can be used to
either read from or write to the pipe.

Prof. Michele Loreti Interprocess Communication 250 / 279

Formatted Piping

Function popen can be used to initiate pipe streams to or from a process.

#i n c l u d e <s t d i o . h>

FILE ∗popen (con s t cha r ∗command , con s t cha r ∗mode) ;

The popen() function shall execute the command specified by the string
command.

It shall create a pipe between the calling program and the executed
command, and shall return a pointer to a stream that can be used to
either read from or write to the pipe.

Prof. Michele Loreti Interprocess Communication 250 / 279

Formatted Piping

Function popen can be used to initiate pipe streams to or from a process.

#i n c l u d e <s t d i o . h>

FILE ∗popen (con s t cha r ∗command , con s t cha r ∗mode) ;

The popen() function shall execute the command specified by the string
command.

It shall create a pipe between the calling program and the executed
command, and shall return a pointer to a stream that can be used to
either read from or write to the pipe.

Prof. Michele Loreti Interprocess Communication 250 / 279

Formatted Piping

FILE ∗ f p ;
i n t s t a t u s ;
cha r path [PATH MAX] ;

fp = popen (” l s ∗” , ” r ”) ;
i f (f p == NULL)

/∗ Handle e r r o r ∗/ ;

wh i l e (f g e t s (path , PATH MAX, fp) != NULL)
p r i n t f (”%s ” , path) ;

s t a t u s = p c l o s e (fp) ;
i f (s t a t u s == −1) {

/∗ E r r o r r e p o r t e d by p c l o s e () ∗/
. . .

} e l s e {
. . .

}

Prof. Michele Loreti Interprocess Communication 251 / 279

Low level Piping

To create a low level pipe function pipe can be used.

#i n c l u d e <un i s t d . h>

i n t p i p e (i n t fd [2]) ;

This function shall create a pipe and place two file descriptors, one each
into the arguments fd [0] and fd [1] , that refer to the open file descriptions
for the read and write ends of the pipe.

Data can be written to the file descriptor fd [1] and read from the file
descriptor fd [0] .

Prof. Michele Loreti Interprocess Communication 252 / 279

Low level Piping

To create a low level pipe function pipe can be used.

#i n c l u d e <un i s t d . h>

i n t p i p e (i n t fd [2]) ;

This function shall create a pipe and place two file descriptors, one each
into the arguments fd [0] and fd [1] , that refer to the open file descriptions
for the read and write ends of the pipe.

Data can be written to the file descriptor fd [1] and read from the file
descriptor fd [0] .

Prof. Michele Loreti Interprocess Communication 252 / 279

Low level Piping

To create a low level pipe function pipe can be used.

#i n c l u d e <un i s t d . h>

i n t p i p e (i n t fd [2]) ;

This function shall create a pipe and place two file descriptors, one each
into the arguments fd [0] and fd [1] , that refer to the open file descriptions
for the read and write ends of the pipe.

Data can be written to the file descriptor fd [1] and read from the file
descriptor fd [0] .

Prof. Michele Loreti Interprocess Communication 252 / 279

Low level Piping

To create a low level pipe function pipe can be used.

#i n c l u d e <un i s t d . h>

i n t p i p e (i n t fd [2]) ;

This function shall create a pipe and place two file descriptors, one each
into the arguments fd [0] and fd [1] , that refer to the open file descriptions
for the read and write ends of the pipe.

Data can be written to the file descriptor fd [1] and read from the file
descriptor fd [0] .

Prof. Michele Loreti Interprocess Communication 252 / 279

Low level Piping

i n t pdes [2] ;

p i p e (pdes) ;
i f (f o r k () == 0) {

/∗ c h i l d ∗/
c l o s e (pdes [1]) ;
r ead (pdes [0]) ; /∗ r ead from pa r en t ∗/
.

} e l s e {
c l o s e (pdes [0]) ;
w r i t e (pdes [1]) ; /∗ w r i t e to c h i l d ∗/
.

}

Prof. Michele Loreti Interprocess Communication 253 / 279

Interrupts and Signals

When a process terminates abnormally it usually tries to send a signal
indicating what went wrong. C programs (and UNIX) can trap these for
diagnostics. Also user specified communication can take place in this way.

Signals are software generated interrupts that are sent to a process when a
event happens.

Signals can be posted to a process when the system detects a software
event, such as a user entering an interrupt or stop or a kill request from
another process.

Signals can also be come directly from the OS kernel when a hardware
event such as a bus error or an illegal instruction is encountered.

Prof. Michele Loreti Interprocess Communication 254 / 279

Interrupts and Signals

When a process terminates abnormally it usually tries to send a signal
indicating what went wrong. C programs (and UNIX) can trap these for
diagnostics. Also user specified communication can take place in this way.

Signals are software generated interrupts that are sent to a process when a
event happens.

Signals can be posted to a process when the system detects a software
event, such as a user entering an interrupt or stop or a kill request from
another process.

Signals can also be come directly from the OS kernel when a hardware
event such as a bus error or an illegal instruction is encountered.

Prof. Michele Loreti Interprocess Communication 254 / 279

Interrupts and Signals

When a process terminates abnormally it usually tries to send a signal
indicating what went wrong. C programs (and UNIX) can trap these for
diagnostics. Also user specified communication can take place in this way.

Signals are software generated interrupts that are sent to a process when a
event happens.

Signals can be posted to a process when the system detects a software
event, such as a user entering an interrupt or stop or a kill request from
another process.

Signals can also be come directly from the OS kernel when a hardware
event such as a bus error or an illegal instruction is encountered.

Prof. Michele Loreti Interprocess Communication 254 / 279

Interrupts and Signals

When a process terminates abnormally it usually tries to send a signal
indicating what went wrong. C programs (and UNIX) can trap these for
diagnostics. Also user specified communication can take place in this way.

Signals are software generated interrupts that are sent to a process when a
event happens.

Signals can be posted to a process when the system detects a software
event, such as a user entering an interrupt or stop or a kill request from
another process.

Signals can also be come directly from the OS kernel when a hardware
event such as a bus error or an illegal instruction is encountered.

Prof. Michele Loreti Interprocess Communication 254 / 279

Interrupts and Signals

The system defines a set of signals that can be posted to a process. Signal
delivery is analogous to hardware interrupts in that a signal can be blocked
from being delivered in the future.

Most signals cause termination of the receiving process if no action is
taken by the process in response to the signal. Some signals stop the
receiving process and other signals can be ignored.

Each signal has a default action which is one of the following:

� The signal is discarded after being received

� The process is terminated after the signal is received

� A core file is written, then the process is terminated

� Stop the process after the signal is received

Prof. Michele Loreti Interprocess Communication 255 / 279

Interrupts and Signals

The system defines a set of signals that can be posted to a process. Signal
delivery is analogous to hardware interrupts in that a signal can be blocked
from being delivered in the future.

Most signals cause termination of the receiving process if no action is
taken by the process in response to the signal. Some signals stop the
receiving process and other signals can be ignored.

Each signal has a default action which is one of the following:

� The signal is discarded after being received

� The process is terminated after the signal is received

� A core file is written, then the process is terminated

� Stop the process after the signal is received

Prof. Michele Loreti Interprocess Communication 255 / 279

Interrupts and Signals

The system defines a set of signals that can be posted to a process. Signal
delivery is analogous to hardware interrupts in that a signal can be blocked
from being delivered in the future.

Most signals cause termination of the receiving process if no action is
taken by the process in response to the signal. Some signals stop the
receiving process and other signals can be ignored.

Each signal has a default action which is one of the following:

� The signal is discarded after being received

� The process is terminated after the signal is received

� A core file is written, then the process is terminated

� Stop the process after the signal is received

Prof. Michele Loreti Interprocess Communication 255 / 279

Interrupts and Signals

Each signal defined by the system falls into one of five classes:

� Hardware conditions

� Software conditions

� Input/output notification

� Process control

� Resource control

Macros are defined in signal .h header file for common signals.

Examples: SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGKILL,. . .

Prof. Michele Loreti Interprocess Communication 256 / 279

Interrupts and Signals

Each signal defined by the system falls into one of five classes:

� Hardware conditions

� Software conditions

� Input/output notification

� Process control

� Resource control

Macros are defined in signal .h header file for common signals.

Examples: SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGKILL,. . .

Prof. Michele Loreti Interprocess Communication 256 / 279

Interrupts and Signals

Each signal defined by the system falls into one of five classes:

� Hardware conditions

� Software conditions

� Input/output notification

� Process control

� Resource control

Macros are defined in signal .h header file for common signals.

Examples: SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGKILL,. . .

Prof. Michele Loreti Interprocess Communication 256 / 279

Interrupts and Signals

There are two common functions used to send signals: kill and raise :

#i n c l u d e < s i g n a l . h>

i n t k i l l (p i d t p id , i n t s i g) ;

i n t r a i s e (i n t s i g) ;

The kill () function shall send a signal to a process or a group of processes
specified by pid.

If pid is greater than 0, sig shall be sent to the process whose process ID is
equal to pid.

If pid is 0, sig shall be sent to all processes (excluding an unspecified set of
system processes) whose process group ID is equal to the process group ID
of the sender.

Prof. Michele Loreti Interprocess Communication 257 / 279

Interrupts and Signals

There are two common functions used to send signals: kill and raise :

#i n c l u d e < s i g n a l . h>

i n t k i l l (p i d t p id , i n t s i g) ;

i n t r a i s e (i n t s i g) ;

The kill () function shall send a signal to a process or a group of processes
specified by pid.

If pid is greater than 0, sig shall be sent to the process whose process ID is
equal to pid.

If pid is 0, sig shall be sent to all processes (excluding an unspecified set of
system processes) whose process group ID is equal to the process group ID
of the sender.

Prof. Michele Loreti Interprocess Communication 257 / 279

Interrupts and Signals

There are two common functions used to send signals: kill and raise :

#i n c l u d e < s i g n a l . h>

i n t k i l l (p i d t p id , i n t s i g) ;

i n t r a i s e (i n t s i g) ;

The kill () function shall send a signal to a process or a group of processes
specified by pid.

If pid is greater than 0, sig shall be sent to the process whose process ID is
equal to pid.

If pid is 0, sig shall be sent to all processes (excluding an unspecified set of
system processes) whose process group ID is equal to the process group ID
of the sender.

Prof. Michele Loreti Interprocess Communication 257 / 279

Interrupts and Signals

There are two common functions used to send signals: kill and raise :

#i n c l u d e < s i g n a l . h>

i n t k i l l (p i d t p id , i n t s i g) ;

i n t r a i s e (i n t s i g) ;

The kill () function shall send a signal to a process or a group of processes
specified by pid.

If pid is greater than 0, sig shall be sent to the process whose process ID is
equal to pid.

If pid is 0, sig shall be sent to all processes (excluding an unspecified set of
system processes) whose process group ID is equal to the process group ID
of the sender.

Prof. Michele Loreti Interprocess Communication 257 / 279

Interrupts and Signals

There are two common functions used to send signals: kill and raise :

#i n c l u d e < s i g n a l . h>

i n t k i l l (p i d t p id , i n t s i g) ;

i n t r a i s e (i n t s i g) ;

The kill () function shall send a signal to a process or a group of processes
specified by pid.

If pid is greater than 0, sig shall be sent to the process whose process ID is
equal to pid.

If pid is 0, sig shall be sent to all processes (excluding an unspecified set of
system processes) whose process group ID is equal to the process group ID
of the sender.

Prof. Michele Loreti Interprocess Communication 257 / 279

Interrupts and Signals

There are two common functions used to send signals: kill and raise :

#i n c l u d e < s i g n a l . h>

i n t k i l l (p i d t p id , i n t s i g) ;

i n t r a i s e (i n t s i g) ;

The raise () function shall send the signal sig to the executing thread or
process.

If a signal handler is called, the raise () function shall not return until after
the signal handler does.

Prof. Michele Loreti Interprocess Communication 258 / 279

Interrupts and Signals

There are two common functions used to send signals: kill and raise :

#i n c l u d e < s i g n a l . h>

i n t k i l l (p i d t p id , i n t s i g) ;

i n t r a i s e (i n t s i g) ;

The raise () function shall send the signal sig to the executing thread or
process.

If a signal handler is called, the raise () function shall not return until after
the signal handler does.

Prof. Michele Loreti Interprocess Communication 258 / 279

Signal Handling

An application program can specify a function called a signal handler to be
invoked when a specific signal is received.

When a signal handler is invoked on receipt of a signal, it is said to catch
the signal.

A process can deal with a signal in one of the following ways:

� let the default action happen;

� block the signal (some signals cannot be ignored);

� catch the signal with a handler.

Prof. Michele Loreti Interprocess Communication 259 / 279

Signal Handling

An application program can specify a function called a signal handler to be
invoked when a specific signal is received.

When a signal handler is invoked on receipt of a signal, it is said to catch
the signal.

A process can deal with a signal in one of the following ways:

� let the default action happen;

� block the signal (some signals cannot be ignored);

� catch the signal with a handler.

Prof. Michele Loreti Interprocess Communication 259 / 279

Signal Handling

An application program can specify a function called a signal handler to be
invoked when a specific signal is received.

When a signal handler is invoked on receipt of a signal, it is said to catch
the signal.

A process can deal with a signal in one of the following ways:

� let the default action happen;

� block the signal (some signals cannot be ignored);

� catch the signal with a handler.

Prof. Michele Loreti Interprocess Communication 259 / 279

Signal Handling

Signal handlers usually execute on the current stack of the process.

This lets the signal handler return to the point that execution was
interrupted in the process.

This can be changed on a per-signal basis so that a signal handler
executes on a special stack.

If a process must resume in a different context than the interrupted one, it
must restore the previous context itself

Prof. Michele Loreti Interprocess Communication 260 / 279

Signal Handling

Signal handlers usually execute on the current stack of the process.

This lets the signal handler return to the point that execution was
interrupted in the process.

This can be changed on a per-signal basis so that a signal handler
executes on a special stack.

If a process must resume in a different context than the interrupted one, it
must restore the previous context itself

Prof. Michele Loreti Interprocess Communication 260 / 279

Signal Handling

Signal handlers usually execute on the current stack of the process.

This lets the signal handler return to the point that execution was
interrupted in the process.

This can be changed on a per-signal basis so that a signal handler
executes on a special stack.

If a process must resume in a different context than the interrupted one, it
must restore the previous context itself

Prof. Michele Loreti Interprocess Communication 260 / 279

Signal Handling

Signal handlers usually execute on the current stack of the process.

This lets the signal handler return to the point that execution was
interrupted in the process.

This can be changed on a per-signal basis so that a signal handler
executes on a special stack.

If a process must resume in a different context than the interrupted one, it
must restore the previous context itself

Prof. Michele Loreti Interprocess Communication 260 / 279

Signal Handling

Signal management is done via function signal :

#i n c l u d e < s i g n a l . h>

vo i d (∗ s i g n a l (i n t s i g , v o i d (∗ f unc) (i n t))) (i n t) ;

The function signal () will call the func functions if the process receives a
signal sig .

Parameter func can have three values:

� SIG DFL, a pointer to a system default function which will terminate
the process upon receipt of sig .

� SIG IGN, a pointer to system ignore function, which will disregard the
sig action.

� A pointer to a user specified function.

Prof. Michele Loreti Interprocess Communication 261 / 279

Signal Handling

Signal management is done via function signal :

#i n c l u d e < s i g n a l . h>

vo i d (∗ s i g n a l (i n t s i g , v o i d (∗ f unc) (i n t))) (i n t) ;

The function signal () will call the func functions if the process receives a
signal sig .

Parameter func can have three values:

� SIG DFL, a pointer to a system default function which will terminate
the process upon receipt of sig .

� SIG IGN, a pointer to system ignore function, which will disregard the
sig action.

� A pointer to a user specified function.

Prof. Michele Loreti Interprocess Communication 261 / 279

Signal Handling

Signal management is done via function signal :

#i n c l u d e < s i g n a l . h>

vo i d (∗ s i g n a l (i n t s i g , v o i d (∗ f unc) (i n t))) (i n t) ;

The function signal () will call the func functions if the process receives a
signal sig .

Parameter func can have three values:

� SIG DFL, a pointer to a system default function which will terminate
the process upon receipt of sig .

� SIG IGN, a pointer to system ignore function, which will disregard the
sig action.

� A pointer to a user specified function.

Prof. Michele Loreti Interprocess Communication 261 / 279

Signal Handling
Example (Part 1)

#i n c l u d e <s t d i o . h>
#i n c l u d e < s i g n a l . h>
#i n c l u d e < s t d l i b . h>

vo i d s i g p r o c (i n t) ;

v o i d q u i t p r o c (i n t) ;

main () {
s i g n a l (SIGINT , s i g p r o c) ;
s i g n a l (SIGQUIT , q u i t p r o c) ;
p r i n t f (” c t r l −c d i s a b l e d use c t r l −\\ to q u i t \n”) ;
f o r (; ;) ; /∗ i n f i n i t e l oop ∗/

}

. . .

Prof. Michele Loreti Interprocess Communication 262 / 279

Signal Handling
Example (Part 2)

. . .

v o i d s i g p r o c (i n t s)
{ s i g n a l (SIGINT , s i g p r o c) ; /∗ ∗/

/∗ NOTE some v e r s i o n s o f UNIX w i l l r e s e t s i g n a l to
d e f a u l t
a f t e r each c a l l . So f o r p o r t a b i l i t y r e s e t s i g n a l each

t ime ∗/

p r i n t f (”you have p r e s s e d c t r l −c \n”) ;
}

vo i d q u i t p r o c (i n t s)
{ p r i n t f (” c t r l −\\ p r e s s e d to q u i t \n”) ;

e x i t (0) ; /∗ normal e x i t s t a t u s ∗/
}

Prof. Michele Loreti Interprocess Communication 263 / 279

Signal Handling
Parent-child interaction. . .

Let us now write a program that communicates between child and parent
processes using kill () and signal ().

fork () creates the child process from the parent.

The pid can be checked to decide whether it is the child (== 0) or the
parent (!= 0).

The parent can then send messages to child using the pid and kill ().

The child picks up these signals with signal () and calls appropriate
functions.

Prof. Michele Loreti Interprocess Communication 264 / 279

Signal Handling
Parent-child interaction. . .

Let us now write a program that communicates between child and parent
processes using kill () and signal ().

fork () creates the child process from the parent.

The pid can be checked to decide whether it is the child (== 0) or the
parent (!= 0).

The parent can then send messages to child using the pid and kill ().

The child picks up these signals with signal () and calls appropriate
functions.

Prof. Michele Loreti Interprocess Communication 264 / 279

Signal Handling
Parent-child interaction. . .

Let us now write a program that communicates between child and parent
processes using kill () and signal ().

fork () creates the child process from the parent.

The pid can be checked to decide whether it is the child (== 0) or the
parent (!= 0).

The parent can then send messages to child using the pid and kill ().

The child picks up these signals with signal () and calls appropriate
functions.

Prof. Michele Loreti Interprocess Communication 264 / 279

Signal Handling
Parent-child interaction. . .

Let us now write a program that communicates between child and parent
processes using kill () and signal ().

fork () creates the child process from the parent.

The pid can be checked to decide whether it is the child (== 0) or the
parent (!= 0).

The parent can then send messages to child using the pid and kill ().

The child picks up these signals with signal () and calls appropriate
functions.

Prof. Michele Loreti Interprocess Communication 264 / 279

Signal Handling
Parent-child interaction. . .

Let us now write a program that communicates between child and parent
processes using kill () and signal ().

fork () creates the child process from the parent.

The pid can be checked to decide whether it is the child (== 0) or the
parent (!= 0).

The parent can then send messages to child using the pid and kill ().

The child picks up these signals with signal () and calls appropriate
functions.

Prof. Michele Loreti Interprocess Communication 264 / 279

Signal Handling
Parent-child interaction (Part 1)

#i n c l u d e <s t d i o . h>
#i n c l u d e < s i g n a l . h>
#i n c l u d e < s t d l i b . h>
#i n c l u d e <un i s t d . h>

vo i d s i ghup (i n t) ; /∗ r o u t i n e s c h i l d w i l l c a l l upon s i g t r a p ∗/
vo i d s i g i n t (i n t) ;
v o i d s i g q u i t (i n t) ;

i n t main ()
{

i n t p i d ;

/∗ get c h i l d p r o c e s s ∗/

i f ((p i d = f o r k ()) < 0) {
p e r r o r (” f o r k ”) ;
e x i t (1) ;

}
Prof. Michele Loreti Interprocess Communication 265 / 279

Signal Handling
Parent-child interaction (Part 2)

i f (p i d == 0)
{ /∗ c h i l d ∗/

p r i n t f (”\nCHILD : S e t t i n g S i g n a l Hand l e r s !\ n\n”) ;
s i g n a l (SIGHUP , s i ghup) ; /∗ s e t f u n c t i o n c a l l s ∗/
s i g n a l (SIGINT , s i g i n t) ;
s i g n a l (SIGQUIT , s i g q u i t) ;
p r i n t f (”\nCHILD : DONE!\ n\n”) ;
f o r (; ;) ; /∗ l oop f o r e v e r ∗/

}

Prof. Michele Loreti Interprocess Communication 266 / 279

Signal Handling
Parent-child interaction (Part 3)

e l s e /∗ pa r en t ∗/
{ /∗ p id ho ld i d o f c h i l d ∗/

s l e e p (3) ; /∗ pause f o r 3 s e c s ∗/
p r i n t f (”\nPARENT: s end i ng SIGHUP\n\n”) ;
k i l l (p id , SIGHUP) ;
s l e e p (3) ; /∗ pause f o r 3 s e c s ∗/
p r i n t f (”\nPARENT: s end i ng SIGINT\n\n”) ;
k i l l (p id , SIGINT) ;
s l e e p (3) ; /∗ pause f o r 3 s e c s ∗/
p r i n t f (”\nPARENT: s end i ng SIGQUIT\n\n”) ;
k i l l (p id , SIGQUIT) ;
s l e e p (3) ;
f o r (; ;) ; /∗ l oop f o r e v e r ∗/

}
}

Prof. Michele Loreti Interprocess Communication 267 / 279

Signal Handling
Parent-child interaction (Part 4)

vo i d s i ghup (i n t i)
{ s i g n a l (SIGHUP , s i ghup) ; /∗ r e s e t s i g n a l ∗/

p r i n t f (”CHILD : I have r e c e i v e d a SIGHUP\n”) ;
}

vo i d s i g i n t (i n t i)
{ s i g n a l (SIGINT , s i g i n t) ; /∗ r e s e t s i g n a l ∗/

p r i n t f (”CHILD : I have r e c e i v e d a SIGINT\n”) ;
}

vo i d s i g q u i t (i n t i)
{ p r i n t f (”My DADDY has K i l l e d me ! ! ! \ n”) ;

e x i t (0) ;
}

Prof. Michele Loreti Interprocess Communication 268 / 279

Other signal functions

Process Signal Mask: The collection of signals that are currently blocked
is called the signal mask.
There are a few other functions defined in signal .h:

int sighold (int sig): adds sig to the calling process’s signal mask.

int sigrelse (int sig): removes sig from the calling process’s signal mask.

int sigignore (int sig): sets the disposition of sig to SIG IGN.

int sigpause(int sig): removes sig from the calling process’s signal mask
and suspends the calling process until a signal is received.

Prof. Michele Loreti Interprocess Communication 269 / 279

Other signal functions

Process Signal Mask: The collection of signals that are currently blocked
is called the signal mask.
There are a few other functions defined in signal .h:

int sighold (int sig): adds sig to the calling process’s signal mask.

int sigrelse (int sig): removes sig from the calling process’s signal mask.

int sigignore (int sig): sets the disposition of sig to SIG IGN.

int sigpause(int sig): removes sig from the calling process’s signal mask
and suspends the calling process until a signal is received.

Prof. Michele Loreti Interprocess Communication 269 / 279

Other signal functions

Process Signal Mask: The collection of signals that are currently blocked
is called the signal mask.
There are a few other functions defined in signal .h:

int sighold (int sig): adds sig to the calling process’s signal mask.

int sigrelse (int sig): removes sig from the calling process’s signal mask.

int sigignore (int sig): sets the disposition of sig to SIG IGN.

int sigpause(int sig): removes sig from the calling process’s signal mask
and suspends the calling process until a signal is received.

Prof. Michele Loreti Interprocess Communication 269 / 279

Other signal functions

Process Signal Mask: The collection of signals that are currently blocked
is called the signal mask.
There are a few other functions defined in signal .h:

int sighold (int sig): adds sig to the calling process’s signal mask.

int sigrelse (int sig): removes sig from the calling process’s signal mask.

int sigignore (int sig): sets the disposition of sig to SIG IGN.

int sigpause(int sig): removes sig from the calling process’s signal mask
and suspends the calling process until a signal is received.

Prof. Michele Loreti Interprocess Communication 269 / 279

Other signal functions

Process Signal Mask: The collection of signals that are currently blocked
is called the signal mask.
There are a few other functions defined in signal .h:

int sighold (int sig): adds sig to the calling process’s signal mask.

int sigrelse (int sig): removes sig from the calling process’s signal mask.

int sigignore (int sig): sets the disposition of sig to SIG IGN.

int sigpause(int sig): removes sig from the calling process’s signal mask
and suspends the calling process until a signal is received.

Prof. Michele Loreti Interprocess Communication 269 / 279

Sockets

Sockets provide point-to-point, two-way communication between two
processes.

Sockets are very versatile and are a basic component of interprocess and
intersystem communication.

A socket is an endpoint of communication to which a name can be bound.

A socket has a type and one or more associated processes.

Prof. Michele Loreti Interprocess Communication 270 / 279

Sockets

Sockets provide point-to-point, two-way communication between two
processes.

Sockets are very versatile and are a basic component of interprocess and
intersystem communication.

A socket is an endpoint of communication to which a name can be bound.

A socket has a type and one or more associated processes.

Prof. Michele Loreti Interprocess Communication 270 / 279

Sockets

Sockets provide point-to-point, two-way communication between two
processes.

Sockets are very versatile and are a basic component of interprocess and
intersystem communication.

A socket is an endpoint of communication to which a name can be bound.

A socket has a type and one or more associated processes.

Prof. Michele Loreti Interprocess Communication 270 / 279

Sockets

Sockets provide point-to-point, two-way communication between two
processes.

Sockets are very versatile and are a basic component of interprocess and
intersystem communication.

A socket is an endpoint of communication to which a name can be bound.

A socket has a type and one or more associated processes.

Prof. Michele Loreti Interprocess Communication 270 / 279

Socket types

Socket types define the communication properties visible to the
application. Processes communicate only between sockets of the same
type.

Stream socket: provides two-way, sequenced, reliable, and unduplicated
flow of data with no record boundaries (SOCK STREAM).

Datagram socket: supports a two-way flow of messages. A on a
datagram socket may receive messages in a different order from the
sequence in which the messages were sent (SOCK DGRAM).

Sequential packet socket: provides a two-way, sequenced, reliable,
connection, for datagrams of a fixed maximum length
(SOCK SEQPACKET).No protocol for this type has been implemented for
any protocol family!.

Raw socket: provides access to the underlying communication protocols.

Prof. Michele Loreti Interprocess Communication 271 / 279

Socket types

Socket types define the communication properties visible to the
application. Processes communicate only between sockets of the same
type.

Stream socket: provides two-way, sequenced, reliable, and unduplicated
flow of data with no record boundaries (SOCK STREAM).

Datagram socket: supports a two-way flow of messages. A on a
datagram socket may receive messages in a different order from the
sequence in which the messages were sent (SOCK DGRAM).

Sequential packet socket: provides a two-way, sequenced, reliable,
connection, for datagrams of a fixed maximum length
(SOCK SEQPACKET).No protocol for this type has been implemented for
any protocol family!.

Raw socket: provides access to the underlying communication protocols.

Prof. Michele Loreti Interprocess Communication 271 / 279

Socket types

Socket types define the communication properties visible to the
application. Processes communicate only between sockets of the same
type.

Stream socket: provides two-way, sequenced, reliable, and unduplicated
flow of data with no record boundaries (SOCK STREAM).

Datagram socket: supports a two-way flow of messages. A on a
datagram socket may receive messages in a different order from the
sequence in which the messages were sent (SOCK DGRAM).

Sequential packet socket: provides a two-way, sequenced, reliable,
connection, for datagrams of a fixed maximum length
(SOCK SEQPACKET).No protocol for this type has been implemented for
any protocol family!.

Raw socket: provides access to the underlying communication protocols.

Prof. Michele Loreti Interprocess Communication 271 / 279

Socket types

Socket types define the communication properties visible to the
application. Processes communicate only between sockets of the same
type.

Stream socket: provides two-way, sequenced, reliable, and unduplicated
flow of data with no record boundaries (SOCK STREAM).

Datagram socket: supports a two-way flow of messages. A on a
datagram socket may receive messages in a different order from the
sequence in which the messages were sent (SOCK DGRAM).

Sequential packet socket: provides a two-way, sequenced, reliable,
connection, for datagrams of a fixed maximum length
(SOCK SEQPACKET).

No protocol for this type has been implemented for
any protocol family!.

Raw socket: provides access to the underlying communication protocols.

Prof. Michele Loreti Interprocess Communication 271 / 279

Socket types

Socket types define the communication properties visible to the
application. Processes communicate only between sockets of the same
type.

Stream socket: provides two-way, sequenced, reliable, and unduplicated
flow of data with no record boundaries (SOCK STREAM).

Datagram socket: supports a two-way flow of messages. A on a
datagram socket may receive messages in a different order from the
sequence in which the messages were sent (SOCK DGRAM).

Sequential packet socket: provides a two-way, sequenced, reliable,
connection, for datagrams of a fixed maximum length
(SOCK SEQPACKET).No protocol for this type has been implemented for
any protocol family!.

Raw socket: provides access to the underlying communication protocols.

Prof. Michele Loreti Interprocess Communication 271 / 279

Socket types

Socket types define the communication properties visible to the
application. Processes communicate only between sockets of the same
type.

Stream socket: provides two-way, sequenced, reliable, and unduplicated
flow of data with no record boundaries (SOCK STREAM).

Datagram socket: supports a two-way flow of messages. A on a
datagram socket may receive messages in a different order from the
sequence in which the messages were sent (SOCK DGRAM).

Sequential packet socket: provides a two-way, sequenced, reliable,
connection, for datagrams of a fixed maximum length
(SOCK SEQPACKET).No protocol for this type has been implemented for
any protocol family!.

Raw socket: provides access to the underlying communication protocols.

Prof. Michele Loreti Interprocess Communication 271 / 279

Socket Creation and Naming

To create a socket function socket can be used:

#i n c l u d e <s y s / s o ck e t . h>

i n t s o c k e t (i n t domain , i n t type , i n t p r o t o c o l) ;

The socket() function shall create an unbound socket in a communications
domain, and return a file descriptor that can be used in later function calls
that operate on sockets.

Prof. Michele Loreti Interprocess Communication 272 / 279

Socket Creation and Naming

To create a socket function socket can be used:

#i n c l u d e <s y s / s o ck e t . h>

i n t s o c k e t (i n t domain , i n t type , i n t p r o t o c o l) ;

The socket() function shall create an unbound socket in a communications
domain, and return a file descriptor that can be used in later function calls
that operate on sockets.

Prof. Michele Loreti Interprocess Communication 272 / 279

Socket Binding

A remote process has no way to identify a socket until an address is bound
to it.

Communicating processes connect through addresses:

� In the UNIX domain, a connection is usually composed of one or two
path names.

� In the Internet domain, a connection is composed of local and remote
addresses and local and remote ports.

Prof. Michele Loreti Interprocess Communication 273 / 279

Socket Binding

A remote process has no way to identify a socket until an address is bound
to it.

Communicating processes connect through addresses:

� In the UNIX domain, a connection is usually composed of one or two
path names.

� In the Internet domain, a connection is composed of local and remote
addresses and local and remote ports.

Prof. Michele Loreti Interprocess Communication 273 / 279

Socket Binding

#i n c l u d e <s y s / s o ck e t . h>

i n t b ind (i n t socket , con s t s t r u c t sockaddr ∗ addre s s ,
s o c k l e n t a d d r e s s l e n) ;

The bind() function shall assign a local socket address address to a socket
identified by descriptor socket that has no local socket address assigned.

Sockets created with the socket() function are initially unnamed; they are
identified only by their address family.

Prof. Michele Loreti Interprocess Communication 274 / 279

Socket Binding

#i n c l u d e <s y s / s o ck e t . h>

i n t b ind (i n t socket , con s t s t r u c t sockaddr ∗ addre s s ,
s o c k l e n t a d d r e s s l e n) ;

The bind() function shall assign a local socket address address to a socket
identified by descriptor socket that has no local socket address assigned.

Sockets created with the socket() function are initially unnamed; they are
identified only by their address family.

Prof. Michele Loreti Interprocess Communication 274 / 279

Socket Binding

#i n c l u d e <s y s / s o ck e t . h>

i n t b ind (i n t socket , con s t s t r u c t sockaddr ∗ addre s s ,
s o c k l e n t a d d r e s s l e n) ;

The bind() function shall assign a local socket address address to a socket
identified by descriptor socket that has no local socket address assigned.

Sockets created with the socket() function are initially unnamed; they are
identified only by their address family.

Prof. Michele Loreti Interprocess Communication 274 / 279

Connecting Stream Sockets

Connecting sockets is usually not symmetric. One process usually acts as a
server and the other process is the client.

The server binds its socket to a previously agreed path or address. It then
blocks on the socket. For a SOCK STREAM socket, the server calls:

i n t l i s t e n (i n t s , i n t back l og)

A client initiates a connection to the server’s socket by a call to:

i n t connect (i n t s , s t r u c t sockaddr ∗name , i n t namelen)

Prof. Michele Loreti Interprocess Communication 275 / 279

Connecting Stream Sockets

Connecting sockets is usually not symmetric. One process usually acts as a
server and the other process is the client.

The server binds its socket to a previously agreed path or address. It then
blocks on the socket. For a SOCK STREAM socket, the server calls:

i n t l i s t e n (i n t s , i n t back l og)

A client initiates a connection to the server’s socket by a call to:

i n t connect (i n t s , s t r u c t sockaddr ∗name , i n t namelen)

Prof. Michele Loreti Interprocess Communication 275 / 279

Connecting Stream Sockets

Connecting sockets is usually not symmetric. One process usually acts as a
server and the other process is the client.

The server binds its socket to a previously agreed path or address. It then
blocks on the socket. For a SOCK STREAM socket, the server calls:

i n t l i s t e n (i n t s , i n t back l og)

A client initiates a connection to the server’s socket by a call to:

i n t connect (i n t s , s t r u c t sockaddr ∗name , i n t namelen)

Prof. Michele Loreti Interprocess Communication 275 / 279

Stream Data Transfer and Closing

Several functions to send and receive data from a SOCK STREAM socket.

Besides read and write functions that can be used to read and write data
from/to a stream, we can also use:

i n t send (i n t s , con s t cha r ∗msg , i n t l en , i n t f l a g s) ,

i n t r e c v (i n t s , cha r ∗buf , i n t l en , i n t f l a g s)

These functions have some additional operational flags (see
documentation).

A SOCK STREAM socket is discarded by calling close ().

Prof. Michele Loreti Interprocess Communication 276 / 279

Stream Data Transfer and Closing

Several functions to send and receive data from a SOCK STREAM socket.

Besides read and write functions that can be used to read and write data
from/to a stream, we can also use:

i n t send (i n t s , con s t cha r ∗msg , i n t l en , i n t f l a g s) ,

i n t r e c v (i n t s , cha r ∗buf , i n t l en , i n t f l a g s)

These functions have some additional operational flags (see
documentation).

A SOCK STREAM socket is discarded by calling close ().

Prof. Michele Loreti Interprocess Communication 276 / 279

Stream Data Transfer and Closing

Several functions to send and receive data from a SOCK STREAM socket.

Besides read and write functions that can be used to read and write data
from/to a stream, we can also use:

i n t send (i n t s , con s t cha r ∗msg , i n t l en , i n t f l a g s) ,

i n t r e c v (i n t s , cha r ∗buf , i n t l en , i n t f l a g s)

These functions have some additional operational flags (see
documentation).

A SOCK STREAM socket is discarded by calling close ().

Prof. Michele Loreti Interprocess Communication 276 / 279

Stream Data Transfer and Closing

Several functions to send and receive data from a SOCK STREAM socket.

Besides read and write functions that can be used to read and write data
from/to a stream, we can also use:

i n t send (i n t s , con s t cha r ∗msg , i n t l en , i n t f l a g s) ,

i n t r e c v (i n t s , cha r ∗buf , i n t l en , i n t f l a g s)

These functions have some additional operational flags (see
documentation).

A SOCK STREAM socket is discarded by calling close ().

Prof. Michele Loreti Interprocess Communication 276 / 279

Datagram sockets

A datagram socket does not require that a connection be established.

Each message carries the destination address.

If a particular local address is needed, a call to bind() must precede any
data transfer.

Data is sent through calls to sendto() or sendmsg().

To receive datagram socket messages, call recvfrom() or recvmsg().

Datagram sockets can also use connect() to connect the socket to a
specified destination socket (send() and recv() are used).

accept() and listen () are not used with datagram sockets.

Prof. Michele Loreti Interprocess Communication 277 / 279

Datagram sockets

A datagram socket does not require that a connection be established.

Each message carries the destination address.

If a particular local address is needed, a call to bind() must precede any
data transfer.

Data is sent through calls to sendto() or sendmsg().

To receive datagram socket messages, call recvfrom() or recvmsg().

Datagram sockets can also use connect() to connect the socket to a
specified destination socket (send() and recv() are used).

accept() and listen () are not used with datagram sockets.

Prof. Michele Loreti Interprocess Communication 277 / 279

Datagram sockets

A datagram socket does not require that a connection be established.

Each message carries the destination address.

If a particular local address is needed, a call to bind() must precede any
data transfer.

Data is sent through calls to sendto() or sendmsg().

To receive datagram socket messages, call recvfrom() or recvmsg().

Datagram sockets can also use connect() to connect the socket to a
specified destination socket (send() and recv() are used).

accept() and listen () are not used with datagram sockets.

Prof. Michele Loreti Interprocess Communication 277 / 279

Datagram sockets

A datagram socket does not require that a connection be established.

Each message carries the destination address.

If a particular local address is needed, a call to bind() must precede any
data transfer.

Data is sent through calls to sendto() or sendmsg().

To receive datagram socket messages, call recvfrom() or recvmsg().

Datagram sockets can also use connect() to connect the socket to a
specified destination socket (send() and recv() are used).

accept() and listen () are not used with datagram sockets.

Prof. Michele Loreti Interprocess Communication 277 / 279

Datagram sockets

A datagram socket does not require that a connection be established.

Each message carries the destination address.

If a particular local address is needed, a call to bind() must precede any
data transfer.

Data is sent through calls to sendto() or sendmsg().

To receive datagram socket messages, call recvfrom() or recvmsg().

Datagram sockets can also use connect() to connect the socket to a
specified destination socket (send() and recv() are used).

accept() and listen () are not used with datagram sockets.

Prof. Michele Loreti Interprocess Communication 277 / 279

Datagram sockets

A datagram socket does not require that a connection be established.

Each message carries the destination address.

If a particular local address is needed, a call to bind() must precede any
data transfer.

Data is sent through calls to sendto() or sendmsg().

To receive datagram socket messages, call recvfrom() or recvmsg().

Datagram sockets can also use connect() to connect the socket to a
specified destination socket (send() and recv() are used).

accept() and listen () are not used with datagram sockets.

Prof. Michele Loreti Interprocess Communication 277 / 279

Datagram sockets

A datagram socket does not require that a connection be established.

Each message carries the destination address.

If a particular local address is needed, a call to bind() must precede any
data transfer.

Data is sent through calls to sendto() or sendmsg().

To receive datagram socket messages, call recvfrom() or recvmsg().

Datagram sockets can also use connect() to connect the socket to a
specified destination socket (send() and recv() are used).

accept() and listen () are not used with datagram sockets.

Prof. Michele Loreti Interprocess Communication 277 / 279

Example Socket Programs

Prof. Michele Loreti Interprocess Communication 278 / 279

To be continued. . .

Prof. Michele Loreti Interprocess Communication 279 / 279

