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Memory areas in C
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B the constant data area;
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Memory areas in C

C has four distinct areas of memory:

B the constant data area;

the static-extent data area;
the stack;

the heap.

Constant data area:

B stores strings and constants and data whose values are known at
compile time;

® js read only, the result of trying to modify it are undefined.
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Memory areas in C

C has four distinct areas of memory:

B the constant data area;

the static-extent data area;
the stack;

the heap.

Static-extent data area:

B js used to store variables that are defined extern or static;
® exists for the lifetime of the program;

® can be modified.
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Memory areas in C

C has four distinct areas of memory:

B the constant data area;

the static-extent data area;
the stack;

the heap.

Constant and static-extent data area are managed by the compiler,
are allocated when program begins and destroyed when it
terminates.
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Memory areas in C

C has four distinct areas of memory:

the constant data area;
the static-extent data area;
the stack;

the heap.

Stack memory:
® js used to store local variables (the ones with automatic extent);
B s allocated at the point a variable is defined and released when it
goes out-of-scope;
m follows a LIFO policy:
B when variables are defined they are pushed onto the stack;

¥ at the end of a block, all the variables that go out-of-scope are popped
off the stack. )
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Memory areas in C

C has four distinct areas of memory:

B the constant data area;

the static-extent data area;
the stack;

the heap.

Heap memory:

® js used for dynamically allocated storage;
® is managed directly by the programmer;

B there is not any support provided by compiler to manage di area!

WARNING!
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Memory Allocation Functions (1/4)

There are two main function for memory allocations:

void *malloc( size_t )
void free( void =* )
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Memory Allocation Functions (1/4)

There are two main function for memory allocations:

void *malloc( size_t )
void free( void =* )

Function malloc allocate the number of bytes passed as parameters and

returns a pointer to the allocated memory area.
The returned datatype is void+ which represents a generic pointer.

Function free allows to release memory that has been allocated with malloc.
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Memory Allocation Functions (2/4)

To dynamically create an array of 10 integers, one can write:

int xp = malloc( 10 * sizeof( int ) );
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Memory Allocation Functions (2/4)

To dynamically create an array of 10 integers, one can write:

int xp = malloc( 10 * sizeof( int ) );

Explicit cast is not needed, however it is common to add it:

int xp = (int*) malloc( 10 % sizeof( int ) );

Memory allocation may fail! In this case value NULL is returned.

To release the memory allocated above, function free is used:

free( p );
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Memory Allocation Functions (3/4)

Another function that can be used to allocate memory in the heap is:

void *calloc(size_t n, size_t size)
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While malloc allocates an area of memory and fills it with unspecified
values, calloc guarantees that all the items in the allocated area are set to
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void *calloc(size_t n, size_t size)

While malloc allocates an area of memory and fills it with unspecified
values, calloc guarantees that all the items in the allocated area are set to
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B is the number of copies to allocate;

B size is the size of each copy.
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Memory Allocation Functions (3/4)

Another function that can be used to allocate memory in the heap is:

void *calloc(size_t n, size_t size)

While malloc allocates an area of memory and fills it with unspecified
values, calloc guarantees that all the items in the allocated area are set to

0:
B is the number of copies to allocate;

B size is the size of each copy.

int *xp = calloc (10, sizeof(int));
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Memory Allocation Functions (4/4)

Function realloc is used change the size of an existing block of dynamically
allocated memory:

void xrealloc(void *p, size_t size)
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malloc, calloc) and size is the new requested size.
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Function realloc is used change the size of an existing block of dynamically
allocated memory:

void xrealloc(void *p, size_t size)

where p is a pointer to the current block of memory (allocated with a
malloc, calloc) and size is the new requested size.

The return value is a pointer to the resized memory block, or NULL if the
request fails.
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Function realloc is used change the size of an existing block of dynamically
allocated memory:

void xrealloc(void *p, size_t size)

where p is a pointer to the current block of memory (allocated with a
malloc, calloc) and size is the new requested size.

The return value is a pointer to the resized memory block, or NULL if the
request fails.

If realloc () is passed a size request of 0, then the memory pointed to by p
is released, and realloc () returns NULL.
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Memory Allocation Functions: Example

Write function string_duplicate that received in input a string performs a
copy of the string in a new.
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copy of the string in a new.

Solution:

char *string duplicate(char xs)

{

char xp = malloc(strlen(s) + 1);
return strcpy(p, s);
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Memory Allocation Functions: Example

Write function string_duplicate that received in input a string performs a
copy of the string in a new.

Solution:

char *string duplicate(char xs)

{

char xp = malloc(strlen(s) + 1);
return strcpy(p, s);

This solution is not correct! The result of malloc may be null!
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Memory Allocation Functions: Example

Solution 2:

char xstring duplicate(char xs)

{

char xp = malloc(strlen(s) + 1);
if (p !'= NULL) {

strepy(p.s);
}

return p;
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Memory Allocation Functions: Example

Solution 2:

char xstring duplicate(char xs)

{

char xp = malloc(strlen(s) + 1);
if (p !'= NULL) {

strepy(p.s);
}

return p;

}

Warning: To avoid memory-leak, the calling function has the
responsibility to free the allocated memory!
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Memory Allocation Functions: Example

Solution 2:

char xstring duplicate(char xs)

{

char xp = malloc(strlen(s) + 1);
if (p !'= NULL) {

strepy(p.s);
}

return p;

}

Warning: To avoid memory-leak, the calling function has the
responsibility to free the allocated memory!

char xs;
s = string_duplicate (" this is a string”);

%;ée(s);
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List of common errors (1/2)
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List of common errors (1/2)

Dereferencing a pointer with an invalid address (Memory Corruption):

int xp;
int z = xp;
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List of common errors (1/2)

Dereferencing a pointer with an invalid address (Memory Corruption):

int xp;
int z = xp;

Dereferencing a pointer that has been freed:

int xp;

free(p);
z = *p;
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List of common errors (1/2)

Dereferencing a pointer with an invalid address (Memory Corruption):

int xp;
int z = xp;

Dereferencing a pointer that has been freed:
int xp;
free(p);
z = *p;

Dereferencing a NULL pointer:

int «p = NULL;
z = *p;
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List of common errors (2/2)

Freeing memory that has already been freed:
free(p);
//No new allocation of p!
free(p);
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List of common errors (2/2)

Freeing memory that has already been freed:

free(p);
//No new allocation of p!
free(p);

Freeing a pointer to memory that was not dynamically allocated:

int z = 10;
int xp = &z;
free(p);
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List of common errors (2/2)

Freeing memory that has already been freed:

free(p);
//No new allocation of p!
free(p);

Freeing a pointer to memory that was not dynamically allocated:

int z = 10;
int xp = &z;
free(p);

Failing to free dynamically allocated memory.
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List of common errors (2/2)

Freeing memory that has already been freed:

free(p);
//No new allocation of p!
free(p);

Freeing a pointer to memory that was not dynamically allocated:

int z = 10;
int xp = &z;
free(p);

Failing to free dynamically allocated memory.

Attempting to access memory beyond the bounds of the allocated block.
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Good practices
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Every malloc() should have an associated free ().
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Good practices

Every malloc() should have an associated free ().

Pointers should be initialised when defined (either with a valid address or
NULL).

Pointers should be assigned NULL after being freed.

If the above rule are used, many of the common errors are avoided
with a NULL-check!
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To be continued. ..
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Structures ,

A structure is declared using the keyword struct, and the internal

organisation of the structure is defined by a set of variables enclosed in
braces:

struct Point {
int x;
int y;

+
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Structures

A structure is declared using the keyword struct, and the internal

organisation of the structure is defined by a set of variables enclosed in
braces:

struct Point {
int x;
int y;

+

By convention, structures should always be named with an uppercase first
letter.
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Structures

A structure is declared using the keyword struct, and the internal
organisation of the structure is defined by a set of variables enclosed in
braces:

struct Point {
int x;
int y;

+

By convention, structures should always be named with an uppercase first
letter.

The variables x and y are called members of the structure named Point.
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Structures

Variables of type Point may be defined as a list of identifiers at the end of
the struct definition:
struct Point {
int x;
int y;
}opl, p2, p3;
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Variables of type Point may be defined as a list of identifiers at the end of
the struct definition:

struct Point {
int x;
int y;

}opl, p2, p3;

or as subsequent definitions using the tag struct Point:

struct Point pl, p2, p3;
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Structures

Variables of type Point may be defined as a list of identifiers at the end of
the struct definition:

struct Point {
int x;
int y;

}opl, p2, p3;

or as subsequent definitions using the tag struct Point:

struct Point pl, p2, p3;
When a structure is defined, its members may be initialised using brace

notation:

struct Point topleft = { 320, 0 };

Prof. Michele Loreti Structures and Unions 108 / 120



Structures

Individual members of a struct may be accessed via the member operator .:

struct Point topleft;
topleft.x = 320;
topleft.y = 0;
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Structures

Individual members of a struct may be accessed via the member operator .:

struct Point topleft;
topleft.x = 320;
topleft.y = 0;

Structures can be nested:

struct Rectangle {
struct Point topleft;
struct Point bottomright;

+
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Structures

Individual members of a struct may be accessed via the member operator .:

struct Point topleft;
topleft.x = 320;
topleft.y = 0;

Structures can be nested:

struct Rectangle {
struct Point topleft;
struct Point bottomright;

+

To access the lowest-level members of a variable of type Rectangle,
therefore, requires two instances of the member operator

struct Rectangle rect;
rect.topleft.x = 50;
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Operations on Structures
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Operations on Structures

The operations permitted on structures are a subset of the operations
permitted on basic types.
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Operations on Structures w

The operations permitted on structures are a subset of the operations
permitted on basic types.

Structures may be copied or assigned, but it is not possible to directly
compare two structures.

p2 = pl; /% Valid. structs may be assigned. x/

if (pl = p2) /% Invalid. structs may not be compared. x/
printf (" Points are equal\n");

if (pl.x = p2.x && pl.y = p2.y)
/x Valid. May compare basic types. x/
printf (" Points are equal\n");
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Operations on Structures

A structure may be passed to a function and may be returned by a
function:

struct Point point_difference(struct Point pl, struct Point
p2)
/% Return the delta (dx, dy) of p2 with respect to pl. x/

{
p2.x —= pl.x;
p2.y —= pl.y;
return p2;

Prof. Michele Loreti Structures and Unions 111 /120



Operations on Structures

A structure may be passed to a function and may be returned by a
function:

struct Point point_difference(struct Point pl, struct Point
p2)
/% Return the delta (dx, dy) of p2 with respect to pl. x/

{
p2.x —= pl.x;

p2.y —= pl.y;
return p2;

As with any other variable, structures are passed by value!

struct Point a = {5,10}, b = {20,30}, c;
c = point_difference(a, b);
/* ¢ = {15,20}, b is unchanged. x/
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Structures and Poiters

Passing structures by value can be inefficient if the structure is large, and
it is generally more efficient to pass a pointer to a struct rather than
making a copy.

struct Point pt = { 50, 50 };

struct Point *pp;

pp = &pt;

(*pp).x = 100; /+ pt.x is now 100. x/
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Passing structures by value can be inefficient if the structure is large, and
it is generally more efficient to pass a pointer to a struct rather than
making a copy.

struct Point pt = { 50, 50 };

struct Point *pp;

pp = &pt;

(*pp).x = 100; /+ pt.x is now 100. x/

The parentheses about (xpp).x are necessary to enforce the correct
order-of-evaluation!
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Structures and Poiters

Passing structures by value can be inefficient if the structure is large, and
it is generally more efficient to pass a pointer to a struct rather than
making a copy.

struct Point pt = { 50, 50 };

struct Point *pp;

pp = &pt;

(*pp).x = 100; /+ pt.x is now 100. x/

The parentheses about (xpp).x are necessary to enforce the correct
order-of-evaluation!

The —> operator permits the expression (xpp).x to be rewritten more
simply as pp—>x.

Prof. Michele Loreti Structures and Unions 112 / 120



Self-referential Structures

A structure definition may not contain an object of its own type.
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Self-referential Structures

A structure definition may not contain an object of its own type.

struct List {
int item;
struct List next; /% Invalid. Cannot define an object of an
incomplete type. x/
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Self-referential Structures

A structure definition may not contain an object of its own type.

struct List {
int item;
struct List next; /% Invalid. Cannot define an object of an
incomplete type. x/

However, it may refer to a pointer of its own type:
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Self-referential Structures

A structure definition may not contain an object of its own type.

struct List {
int item;
struct List next; /% Invalid. Cannot define an object of an
incomplete type. x/

However, it may refer to a pointer of its own type:

struct List {
int item;
struct *xList next;

}

Prof. Michele Loreti Structures and Unions 113 /120



Exercise: List Operations

Write C library that implements basic list operations:
® Jist .h with type and functions declarations;

® |ist .c with all the definitions.
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Typedefs

The keyword typedef provides a means for creating new data type names:

typedef int Length;
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Typedefs

The keyword typedef provides a means for creating new data type names:

typedef int Length;

This makes the name Length a synonym for int.
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Typedefs ,

The keyword typedef provides a means for creating new data type names:

typedef int Length;

This makes the name Length a synonym for int.

The ability to define type synonyms permits a significant improvement in
structure declaration syntax:

typedef struct Point {
int x;
int y;

} Point;

Point ptl, pt2;
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Typedefs and Self-referential Structures

This simplification enabled by typedef is more marked for self-referencing
structures:

typedef struct list_t List;
struct list_t {

int item;

List snext;

b
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Union Types

The declaration of a union type is similar to the declaration of a struct type:
union Utype {

int ival;

float fval;

char xsval;

+;

union Utype x, y, z;
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Union Types

The declaration of a union type is similar to the declaration of a struct type:
union Utype {

int ival;

float fval;

char xsval;

+;

union Utype x, y, z;

Accessing members of a union type is also the same as for structures, with
the . member operator for union objects and the —> operator for pointers
to union objects.
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Structures vs Unions

Differences:

B 3 struct defines a group of related variables and provides storage for
all of its members;

® 3 union provides storage for a single variable, which may be one of
several types.
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Differences:

B 3 struct defines a group of related variables and provides storage for
all of its members;

® 3 union provides storage for a single variable, which may be one of
several types.

In the Utype example, the compiler will allocate sufficient memory to store
the largest of the types int, float, and char x.
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Structures vs Unions

Differences:

B 3 struct defines a group of related variables and provides storage for
all of its members;

® 3 union provides storage for a single variable, which may be one of
several types.

In the Utype example, the compiler will allocate sufficient memory to store
the largest of the types int, float, and char x.

A Utype variable holds a value for one of the three possible types!
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Structures vs Unions

Differences:

B 3 struct defines a group of related variables and provides storage for
all of its members;

® 3 union provides storage for a single variable, which may be one of
several types.

In the Utype example, the compiler will allocate sufficient memory to store
the largest of the types int, float, and char x.

A Utype variable holds a value for one of the three possible types!

It is the programmers responsibility to keep track of which type that might
be!
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S e
Union Types: Example

typedef union { /+ Heterogeneous type. x/
int ival;

float fval;

} Utype;

enum { INT, FLOAT }; /« Define type tags. x/

typedef struct {

int type; /x Tag for the current stored type. x/
Utype val; /x Storage for variant type. x/

} VariantType;

VariantType array[50]; /* Heterogeneous array. x/
array [0].val.ival = 56; /% Assign value. x/
array [0].type = INT; /* Mark type. x/
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To be continued. ..
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