
Language C: Scopes and Memory management

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti
Language C: Scopes and Memory management

40 / 76

Scope and Extent. . .

The scope of a name refers to the part of the program within which the
name can be used.

That is, it describes the visibility of an identifier within the program.

The extent of a variable or function refers to its lifetime in terms of when
memory is allocated to store it, and when that memory is released.

Prof. Michele Loreti
Language C: Scopes and Memory management

41 / 76

Scope and Extent. . .

The scope of a name refers to the part of the program within which the
name can be used.

That is, it describes the visibility of an identifier within the program.

The extent of a variable or function refers to its lifetime in terms of when
memory is allocated to store it, and when that memory is released.

Prof. Michele Loreti
Language C: Scopes and Memory management

41 / 76

Scope and Extent. . .

The scope of a name refers to the part of the program within which the
name can be used.

That is, it describes the visibility of an identifier within the program.

The extent of a variable or function refers to its lifetime in terms of when
memory is allocated to store it, and when that memory is released.

Prof. Michele Loreti
Language C: Scopes and Memory management

41 / 76

Local Scope and Automatic Extent. . .

A variable declared within a function or block has local scope by default

v o i d a f u n c t i o n (i n t a , i n t b)
{

d o u b l e v a l ;
. . .
{

i n t v a l 2 = 5 ;
. . .

} /∗ v a l 2 goes out−of−scope h e r e ∗/
. . .

} /∗ a , b , v a l go out−of−scope h e r e ∗/

A local variable has automatic extent: its lifetime is from the point it is
defined until the end of its block.

Prof. Michele Loreti
Language C: Scopes and Memory management

42 / 76

Local Scope and Automatic Extent. . .

A variable declared within a function or block has local scope by default

v o i d a f u n c t i o n (i n t a , i n t b)
{

d o u b l e v a l ;
. . .
{

i n t v a l 2 = 5 ;
. . .

} /∗ v a l 2 goes out−of−scope h e r e ∗/
. . .

} /∗ a , b , v a l go out−of−scope h e r e ∗/

A local variable has automatic extent: its lifetime is from the point it is
defined until the end of its block.

Prof. Michele Loreti
Language C: Scopes and Memory management

42 / 76

Local Scope and Automatic Extent. . .

A variable declared within a function or block has local scope by default

v o i d a f u n c t i o n (i n t a , i n t b)
{

d o u b l e v a l ;
. . .
{

i n t v a l 2 = 5 ;
. . .

} /∗ v a l 2 goes out−of−scope h e r e ∗/
. . .

} /∗ a , b , v a l go out−of−scope h e r e ∗/

A local variable has automatic extent: its lifetime is from the point it is
defined until the end of its block.

Prof. Michele Loreti
Language C: Scopes and Memory management

42 / 76

Local Scope and Automatic Extent. . .

At the point a local variable is defined, memory is allocated for it on the
stack; this memory is managed automatically by the compiler.

If the variable is not explicitly initialised, then it will hold an undefined
value.

It is often good practice to initialise a local variable when it is
declared.

At the end of the block, the variable is destroyed and the memory
recovered; the variable is said to go out-of-scope.

Prof. Michele Loreti
Language C: Scopes and Memory management

43 / 76

Local Scope and Automatic Extent. . .

At the point a local variable is defined, memory is allocated for it on the
stack; this memory is managed automatically by the compiler.

If the variable is not explicitly initialised, then it will hold an undefined
value.

It is often good practice to initialise a local variable when it is
declared.

At the end of the block, the variable is destroyed and the memory
recovered; the variable is said to go out-of-scope.

Prof. Michele Loreti
Language C: Scopes and Memory management

43 / 76

Local Scope and Automatic Extent. . .

At the point a local variable is defined, memory is allocated for it on the
stack; this memory is managed automatically by the compiler.

If the variable is not explicitly initialised, then it will hold an undefined
value.

It is often good practice to initialise a local variable when it is
declared.

At the end of the block, the variable is destroyed and the memory
recovered; the variable is said to go out-of-scope.

Prof. Michele Loreti
Language C: Scopes and Memory management

43 / 76

Local Scope and Automatic Extent. . .

At the point a local variable is defined, memory is allocated for it on the
stack; this memory is managed automatically by the compiler.

If the variable is not explicitly initialised, then it will hold an undefined
value.

It is often good practice to initialise a local variable when it is
declared.

At the end of the block, the variable is destroyed and the memory
recovered; the variable is said to go out-of-scope.

Prof. Michele Loreti
Language C: Scopes and Memory management

43 / 76

External Scope and Static Extent

A variable defined outside of any function is an external variable, by
default.

External variables and functions are visible over the entire (possibly
multi-file) program; they have external scope (also called program scope).

This means that a function may be called from any function in the
program, and an external may be accessed or changed by any function.

However, it is necessary to first declare a variable or function in each file
before it is used.

The extern keyword is used to declare the existence of an external variable
in one file when it is defined in another.

Prof. Michele Loreti
Language C: Scopes and Memory management

44 / 76

External Scope and Static Extent

A variable defined outside of any function is an external variable, by
default.

External variables and functions are visible over the entire (possibly
multi-file) program; they have external scope (also called program scope).

This means that a function may be called from any function in the
program, and an external may be accessed or changed by any function.

However, it is necessary to first declare a variable or function in each file
before it is used.

The extern keyword is used to declare the existence of an external variable
in one file when it is defined in another.

Prof. Michele Loreti
Language C: Scopes and Memory management

44 / 76

External Scope and Static Extent

A variable defined outside of any function is an external variable, by
default.

External variables and functions are visible over the entire (possibly
multi-file) program; they have external scope (also called program scope).

This means that a function may be called from any function in the
program, and an external may be accessed or changed by any function.

However, it is necessary to first declare a variable or function in each file
before it is used.

The extern keyword is used to declare the existence of an external variable
in one file when it is defined in another.

Prof. Michele Loreti
Language C: Scopes and Memory management

44 / 76

External Scope and Static Extent

A variable defined outside of any function is an external variable, by
default.

External variables and functions are visible over the entire (possibly
multi-file) program; they have external scope (also called program scope).

This means that a function may be called from any function in the
program, and an external may be accessed or changed by any function.

However, it is necessary to first declare a variable or function in each file
before it is used.

The extern keyword is used to declare the existence of an external variable
in one file when it is defined in another.

Prof. Michele Loreti
Language C: Scopes and Memory management

44 / 76

External Scope and Static Extent

A variable defined outside of any function is an external variable, by
default.

External variables and functions are visible over the entire (possibly
multi-file) program; they have external scope (also called program scope).

This means that a function may be called from any function in the
program, and an external may be accessed or changed by any function.

However, it is necessary to first declare a variable or function in each file
before it is used.

The extern keyword is used to declare the existence of an external variable
in one file when it is defined in another.

Prof. Michele Loreti
Language C: Scopes and Memory management

44 / 76

External Scope and Static Extent: Example

File one.c:

i n t g l o b a l v a r ; /∗ e x t e r n a l v a r i a b l e d e f i n i t i o n ∗/
e x t e r n d o u b l e m y v a r i a b l e ; /∗ e x t e r n a l v a r i a b l e

d e c l a r a t i o n (d e f i n e d e l s e w h e r e) ∗/
v o i d myfunc (i n t i d x) ; /∗ e x t e r n a l f u n c t i o n

p r o t o t y p e (d e c l a r a t i o n) ∗/

File two:

d o u b l e m y v a r i a b l e = 3 . 2 ; /∗ e x t e r n a l v a r i a b l e
d e f i n i t i o n ∗/

v o i d myfunc (i n t i d x)
/∗ F u n c t i o n d e f i n i t i o n ∗/
{

e x t e r n i n t g l o b a l v a r ; /∗ e x t e r n a l v a r i a b l e
d e c l a r a t i o n ∗/

. . .
}

Prof. Michele Loreti
Language C: Scopes and Memory management

45 / 76

External Scope and Static Extent

External variables and functions have static extent.

This means that they are allocated memory and exist before the program
starts—before the execution of main()—and continue to exist until the
program terminates.

External variables that are not initialised explicitly are given the default
value of zero; (this is different to local variables, which have arbitrary
initial values by default).

The value of an external variable is retained from one function call to the
next.

Prof. Michele Loreti
Language C: Scopes and Memory management

46 / 76

External Scope and Static Extent

External variables and functions have static extent.

This means that they are allocated memory and exist before the program
starts—before the execution of main()—and continue to exist until the
program terminates.

External variables that are not initialised explicitly are given the default
value of zero; (this is different to local variables, which have arbitrary
initial values by default).

The value of an external variable is retained from one function call to the
next.

Prof. Michele Loreti
Language C: Scopes and Memory management

46 / 76

External Scope and Static Extent

External variables and functions have static extent.

This means that they are allocated memory and exist before the program
starts—before the execution of main()—and continue to exist until the
program terminates.

External variables that are not initialised explicitly are given the default
value of zero; (this is different to local variables, which have arbitrary
initial values by default).

The value of an external variable is retained from one function call to the
next.

Prof. Michele Loreti
Language C: Scopes and Memory management

46 / 76

External Scope and Static Extent

External variables and functions have static extent.

This means that they are allocated memory and exist before the program
starts—before the execution of main()—and continue to exist until the
program terminates.

External variables that are not initialised explicitly are given the default
value of zero; (this is different to local variables, which have arbitrary
initial values by default).

The value of an external variable is retained from one function call to the
next.

Prof. Michele Loreti
Language C: Scopes and Memory management

46 / 76

Static Extent: Remarks

External variables are sometimes used as a convenient mechanism for
avoiding long argument lists.

They provide an alternative to function arguments and return values for
communicating data between functions.

They may also permit more natural semantics if two functions operate on
the same data, but neither calls the other.

Prof. Michele Loreti
Language C: Scopes and Memory management

47 / 76

Static Extent: Remarks

External variables are sometimes used as a convenient mechanism for
avoiding long argument lists.

They provide an alternative to function arguments and return values for
communicating data between functions.

They may also permit more natural semantics if two functions operate on
the same data, but neither calls the other.

Prof. Michele Loreti
Language C: Scopes and Memory management

47 / 76

Static Extent: Remarks

External variables are sometimes used as a convenient mechanism for
avoiding long argument lists.

They provide an alternative to function arguments and return values for
communicating data between functions.

They may also permit more natural semantics if two functions operate on
the same data, but neither calls the other.

Prof. Michele Loreti
Language C: Scopes and Memory management

47 / 76

Static Extent: Remarks

However:
� this may lead to strong dependencies between functions

. . . this violates the modular design principles of decoupled functions
accessible only well-defined interfaces;

� it is easy to write code where the same identifier is used to define two
different external variables;

� nasty and unexpected side-effects may be experienced.

Prof. Michele Loreti
Language C: Scopes and Memory management

48 / 76

Static Extent: Remarks

However:
� this may lead to strong dependencies between functions

. . . this violates the modular design principles of decoupled functions
accessible only well-defined interfaces;

� it is easy to write code where the same identifier is used to define two
different external variables;

� nasty and unexpected side-effects may be experienced.

Prof. Michele Loreti
Language C: Scopes and Memory management

48 / 76

Static Extent: Remarks

However:
� this may lead to strong dependencies between functions

. . . this violates the modular design principles of decoupled functions
accessible only well-defined interfaces;

� it is easy to write code where the same identifier is used to define two
different external variables;

� nasty and unexpected side-effects may be experienced.

Prof. Michele Loreti
Language C: Scopes and Memory management

48 / 76

Static Extent: Remarks

However:
� this may lead to strong dependencies between functions

. . . this violates the modular design principles of decoupled functions
accessible only well-defined interfaces;

� it is easy to write code where the same identifier is used to define two
different external variables;

� nasty and unexpected side-effects may be experienced.

Prof. Michele Loreti
Language C: Scopes and Memory management

48 / 76

Storage Class Specifier: static

The keyword static is a storage class specifier, or qualifier, that imparts
storage properties depending on whether an object is a local variable, an
external variable, or a function.

Local variables keep their local visibility but gain static extent. They are
initialised to zero by default and retain their values between function calls.

i n t i n c r e m e n t (v o i d)
{

s t a t i c i n t l o c a l s t a t i c ;
r e t u r n l o c a l s t a t i c ++;

}

Prof. Michele Loreti
Language C: Scopes and Memory management

49 / 76

Storage Class Specifier: static

The keyword static is a storage class specifier, or qualifier, that imparts
storage properties depending on whether an object is a local variable, an
external variable, or a function.

Local variables keep their local visibility but gain static extent. They are
initialised to zero by default and retain their values between function calls.

i n t i n c r e m e n t (v o i d)
{

s t a t i c i n t l o c a l s t a t i c ;
r e t u r n l o c a l s t a t i c ++;

}

Prof. Michele Loreti
Language C: Scopes and Memory management

49 / 76

Storage Class Specifier: static

The keyword static is a storage class specifier, or qualifier, that imparts
storage properties depending on whether an object is a local variable, an
external variable, or a function.

Local variables keep their local visibility but gain static extent. They are
initialised to zero by default and retain their values between function calls.

i n t i n c r e m e n t (v o i d)
{

s t a t i c i n t l o c a l s t a t i c ;
r e t u r n l o c a l s t a t i c ++;

}

Prof. Michele Loreti
Language C: Scopes and Memory management

49 / 76

Storage Class Specifier: static

External variables and functions that are qualified as static obtain file
scope, which means their visibility is limited to a single source file.

Prevents unwanted access by code in other parts of the program and
reduce the risk of naming conflicts!

File one.c:

s t a t i c d o u b l e m y v a r i a b l e ;
s t a t i c v o i d myfunc (i n t i d x) ;

File two.c:

s t a t i c i n t m y v a r i a b l e ; /∗ no c o n f l i c t ∗/
s t a t i c i n t myfunc (i n t i d x) ; /∗ no c o n f l i c t ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

50 / 76

Storage Class Specifier: static

External variables and functions that are qualified as static obtain file
scope, which means their visibility is limited to a single source file.

Prevents unwanted access by code in other parts of the program and
reduce the risk of naming conflicts!

File one.c:

s t a t i c d o u b l e m y v a r i a b l e ;
s t a t i c v o i d myfunc (i n t i d x) ;

File two.c:

s t a t i c i n t m y v a r i a b l e ; /∗ no c o n f l i c t ∗/
s t a t i c i n t myfunc (i n t i d x) ; /∗ no c o n f l i c t ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

50 / 76

Storage Class Specifier: static

External variables and functions that are qualified as static obtain file
scope, which means their visibility is limited to a single source file.

Prevents unwanted access by code in other parts of the program and
reduce the risk of naming conflicts!

File one.c:

s t a t i c d o u b l e m y v a r i a b l e ;
s t a t i c v o i d myfunc (i n t i d x) ;

File two.c:

s t a t i c i n t m y v a r i a b l e ; /∗ no c o n f l i c t ∗/
s t a t i c i n t myfunc (i n t i d x) ; /∗ no c o n f l i c t ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

50 / 76

Header Files. . .

Identifiers must the declared in a source file before they can be used.

It is generally convenient to collect common declarations in header files,
and include the relevant headers in the source files as required.

Inclusion of header files is performed by the C preprocessor as specified by
the #include directive.

The standard library headers are included using angle brackets to enclose
the filename:

#i n c l u d e <f i l e n a m e . h>

Double quotes are used to indicate that the included file is local available:

#i n c l u d e ” f i l e n a m e . h”

Prof. Michele Loreti
Language C: Scopes and Memory management

51 / 76

Header Files. . .

Identifiers must the declared in a source file before they can be used.

It is generally convenient to collect common declarations in header files,
and include the relevant headers in the source files as required.

Inclusion of header files is performed by the C preprocessor as specified by
the #include directive.

The standard library headers are included using angle brackets to enclose
the filename:

#i n c l u d e <f i l e n a m e . h>

Double quotes are used to indicate that the included file is local available:

#i n c l u d e ” f i l e n a m e . h”

Prof. Michele Loreti
Language C: Scopes and Memory management

51 / 76

Header Files. . .

Identifiers must the declared in a source file before they can be used.

It is generally convenient to collect common declarations in header files,
and include the relevant headers in the source files as required.

Inclusion of header files is performed by the C preprocessor as specified by
the #include directive.

The standard library headers are included using angle brackets to enclose
the filename:

#i n c l u d e <f i l e n a m e . h>

Double quotes are used to indicate that the included file is local available:

#i n c l u d e ” f i l e n a m e . h”

Prof. Michele Loreti
Language C: Scopes and Memory management

51 / 76

Header Files. . .

Identifiers must the declared in a source file before they can be used.

It is generally convenient to collect common declarations in header files,
and include the relevant headers in the source files as required.

Inclusion of header files is performed by the C preprocessor as specified by
the #include directive.

The standard library headers are included using angle brackets to enclose
the filename:

#i n c l u d e <f i l e n a m e . h>

Double quotes are used to indicate that the included file is local available:

#i n c l u d e ” f i l e n a m e . h”

Prof. Michele Loreti
Language C: Scopes and Memory management

51 / 76

Modular programming in C

Large-scale C programs are organised so that related functions and
variables are grouped into separate source files.

Grouping code by source file is central to C’s compilation model:

� each file is compiled separately to produce individual object modules;

� object modules are linked to form the complete program.

Separate compilation, in conjunction with the C scoping rules, gives rise to
the paradigm of modular programming.

Prof. Michele Loreti
Language C: Scopes and Memory management

52 / 76

Modular programming in C

Large-scale C programs are organised so that related functions and
variables are grouped into separate source files.

Grouping code by source file is central to C’s compilation model:

� each file is compiled separately to produce individual object modules;

� object modules are linked to form the complete program.

Separate compilation, in conjunction with the C scoping rules, gives rise to
the paradigm of modular programming.

Prof. Michele Loreti
Language C: Scopes and Memory management

52 / 76

Modular programming in C

Large-scale C programs are organised so that related functions and
variables are grouped into separate source files.

Grouping code by source file is central to C’s compilation model:

� each file is compiled separately to produce individual object modules;

� object modules are linked to form the complete program.

Separate compilation, in conjunction with the C scoping rules, gives rise to
the paradigm of modular programming.

Prof. Michele Loreti
Language C: Scopes and Memory management

52 / 76

Modular programming in C

Each source file is a module containing related functions and variables.

The declarations of functions and variables (and constants and data-types)
to be shared with other modules are stored in an associated header file
containing the public interface.

Access to the module from other modules is restricted to the public
interface.

Functions and variables defined in a module that are referenced only by
functions within that module are declared static: this is the private
interface visible only from within the module, as part of the module’s
internal implementation.

Private interface declarations are not added to the header file, but are
declared at the top of the source file.

Prof. Michele Loreti
Language C: Scopes and Memory management

53 / 76

Modular programming in C

Each source file is a module containing related functions and variables.

The declarations of functions and variables (and constants and data-types)
to be shared with other modules are stored in an associated header file
containing the public interface.

Access to the module from other modules is restricted to the public
interface.

Functions and variables defined in a module that are referenced only by
functions within that module are declared static: this is the private
interface visible only from within the module, as part of the module’s
internal implementation.

Private interface declarations are not added to the header file, but are
declared at the top of the source file.

Prof. Michele Loreti
Language C: Scopes and Memory management

53 / 76

Modular programming in C

Each source file is a module containing related functions and variables.

The declarations of functions and variables (and constants and data-types)
to be shared with other modules are stored in an associated header file
containing the public interface.

Access to the module from other modules is restricted to the public
interface.

Functions and variables defined in a module that are referenced only by
functions within that module are declared static: this is the private
interface visible only from within the module, as part of the module’s
internal implementation.

Private interface declarations are not added to the header file, but are
declared at the top of the source file.

Prof. Michele Loreti
Language C: Scopes and Memory management

53 / 76

Modular programming in C

Each source file is a module containing related functions and variables.

The declarations of functions and variables (and constants and data-types)
to be shared with other modules are stored in an associated header file
containing the public interface.

Access to the module from other modules is restricted to the public
interface.

Functions and variables defined in a module that are referenced only by
functions within that module are declared static: this is the private
interface visible only from within the module, as part of the module’s
internal implementation.

Private interface declarations are not added to the header file, but are
declared at the top of the source file.

Prof. Michele Loreti
Language C: Scopes and Memory management

53 / 76

Modular programming in C

Each source file is a module containing related functions and variables.

The declarations of functions and variables (and constants and data-types)
to be shared with other modules are stored in an associated header file
containing the public interface.

Access to the module from other modules is restricted to the public
interface.

Functions and variables defined in a module that are referenced only by
functions within that module are declared static: this is the private
interface visible only from within the module, as part of the module’s
internal implementation.

Private interface declarations are not added to the header file, but are
declared at the top of the source file.

Prof. Michele Loreti
Language C: Scopes and Memory management

53 / 76

Modular Programming: Advantages

� Groups of related functions and variables are collected together. . .

. . . intuitive use of a library of code than just a disorganised set of
functions;

. . . Modules represent a higher level of abstraction than functions.

� Implementation details are hidden behind a public interface.

� Users of the module only use public interface of a module.

� Modules are decoupled from the rest of the program, allowing them
to be built, tested, and debugged in isolation.

� Modules facilitate team program development where individuals can
each work on different modules that make up the program.

Prof. Michele Loreti
Language C: Scopes and Memory management

54 / 76

Modular Programming: Advantages

� Groups of related functions and variables are collected together. . .

. . . intuitive use of a library of code than just a disorganised set of
functions;

. . . Modules represent a higher level of abstraction than functions.

� Implementation details are hidden behind a public interface.

� Users of the module only use public interface of a module.

� Modules are decoupled from the rest of the program, allowing them
to be built, tested, and debugged in isolation.

� Modules facilitate team program development where individuals can
each work on different modules that make up the program.

Prof. Michele Loreti
Language C: Scopes and Memory management

54 / 76

Modular Programming: Advantages

� Groups of related functions and variables are collected together. . .

. . . intuitive use of a library of code than just a disorganised set of
functions;

. . . Modules represent a higher level of abstraction than functions.

� Implementation details are hidden behind a public interface.

� Users of the module only use public interface of a module.

� Modules are decoupled from the rest of the program, allowing them
to be built, tested, and debugged in isolation.

� Modules facilitate team program development where individuals can
each work on different modules that make up the program.

Prof. Michele Loreti
Language C: Scopes and Memory management

54 / 76

Modular Programming: Advantages

� Groups of related functions and variables are collected together. . .

. . . intuitive use of a library of code than just a disorganised set of
functions;

. . . Modules represent a higher level of abstraction than functions.

� Implementation details are hidden behind a public interface.

� Users of the module only use public interface of a module.

� Modules are decoupled from the rest of the program, allowing them
to be built, tested, and debugged in isolation.

� Modules facilitate team program development where individuals can
each work on different modules that make up the program.

Prof. Michele Loreti
Language C: Scopes and Memory management

54 / 76

Modular Programming: Advantages

� Groups of related functions and variables are collected together. . .

. . . intuitive use of a library of code than just a disorganised set of
functions;

. . . Modules represent a higher level of abstraction than functions.

� Implementation details are hidden behind a public interface.

� Users of the module only use public interface of a module.

� Modules are decoupled from the rest of the program, allowing them
to be built, tested, and debugged in isolation.

� Modules facilitate team program development where individuals can
each work on different modules that make up the program.

Prof. Michele Loreti
Language C: Scopes and Memory management

54 / 76

Modular Programming: Advantages

� Groups of related functions and variables are collected together. . .

. . . intuitive use of a library of code than just a disorganised set of
functions;

. . . Modules represent a higher level of abstraction than functions.

� Implementation details are hidden behind a public interface.

� Users of the module only use public interface of a module.

� Modules are decoupled from the rest of the program, allowing them
to be built, tested, and debugged in isolation.

� Modules facilitate team program development where individuals can
each work on different modules that make up the program.

Prof. Michele Loreti
Language C: Scopes and Memory management

54 / 76

Modular Programming: Advantages

� Groups of related functions and variables are collected together. . .

. . . intuitive use of a library of code than just a disorganised set of
functions;

. . . Modules represent a higher level of abstraction than functions.

� Implementation details are hidden behind a public interface.

� Users of the module only use public interface of a module.

� Modules are decoupled from the rest of the program, allowing them
to be built, tested, and debugged in isolation.

� Modules facilitate team program development where individuals can
each work on different modules that make up the program.

Prof. Michele Loreti
Language C: Scopes and Memory management

54 / 76

Pointers. . .

A typical machine has an array of consecutively numbered memory cells. . .

. . . these numbers are termed addresses.

. . . each cell consists of a set of bits, and the cell bit-pattern is the cell’s
value.

When a variable is defined, it is allocated a portion of memory. Thus, the
variable has a value and an address for where that value resides.

A pointer is a variable whose value is the address of another
variable.

Prof. Michele Loreti
Language C: Scopes and Memory management

55 / 76

Pointers. . .

A typical machine has an array of consecutively numbered memory cells. . .

. . . these numbers are termed addresses.

. . . each cell consists of a set of bits, and the cell bit-pattern is the cell’s
value.

When a variable is defined, it is allocated a portion of memory. Thus, the
variable has a value and an address for where that value resides.

A pointer is a variable whose value is the address of another
variable.

Prof. Michele Loreti
Language C: Scopes and Memory management

55 / 76

Pointers. . .

A typical machine has an array of consecutively numbered memory cells. . .

. . . these numbers are termed addresses.

. . . each cell consists of a set of bits, and the cell bit-pattern is the cell’s
value.

When a variable is defined, it is allocated a portion of memory. Thus, the
variable has a value and an address for where that value resides.

A pointer is a variable whose value is the address of another
variable.

Prof. Michele Loreti
Language C: Scopes and Memory management

55 / 76

Pointers. . .

A typical machine has an array of consecutively numbered memory cells. . .

. . . these numbers are termed addresses.

. . . each cell consists of a set of bits, and the cell bit-pattern is the cell’s
value.

When a variable is defined, it is allocated a portion of memory. Thus, the
variable has a value and an address for where that value resides.

A pointer is a variable whose value is the address of another
variable.

Prof. Michele Loreti
Language C: Scopes and Memory management

55 / 76

Pointers. . .

A typical machine has an array of consecutively numbered memory cells. . .

. . . these numbers are termed addresses.

. . . each cell consists of a set of bits, and the cell bit-pattern is the cell’s
value.

When a variable is defined, it is allocated a portion of memory. Thus, the
variable has a value and an address for where that value resides.

A pointer is a variable whose value is the address of another
variable.

Prof. Michele Loreti
Language C: Scopes and Memory management

55 / 76

Pointers: An Example

Let us consider the following portion of code:

c h a r x = 3 ;

We assume that this variable is stored at address 62.

A pointer px is subsequently defined, assume it is stored at address 25, and
initialised with the address of x as follows:

c h a r ∗px = &x ;

The value of px, therefore, is 62.

Notice that a pointer is just another type of variable; it, also, has
an address and may in turn be pointed-to by a pointer-to-a-pointer
variable.

Prof. Michele Loreti
Language C: Scopes and Memory management

56 / 76

Pointers: An Example

Let us consider the following portion of code:

c h a r x = 3 ;

We assume that this variable is stored at address 62.

A pointer px is subsequently defined, assume it is stored at address 25, and
initialised with the address of x as follows:

c h a r ∗px = &x ;

The value of px, therefore, is 62.

Notice that a pointer is just another type of variable; it, also, has
an address and may in turn be pointed-to by a pointer-to-a-pointer
variable.

Prof. Michele Loreti
Language C: Scopes and Memory management

56 / 76

Pointers: An Example

Let us consider the following portion of code:

c h a r x = 3 ;

We assume that this variable is stored at address 62.

A pointer px is subsequently defined, assume it is stored at address 25, and
initialised with the address of x as follows:

c h a r ∗px = &x ;

The value of px, therefore, is 62.

Notice that a pointer is just another type of variable; it, also, has
an address and may in turn be pointed-to by a pointer-to-a-pointer
variable.

Prof. Michele Loreti
Language C: Scopes and Memory management

56 / 76

Pointers: An Example

Let us consider the following portion of code:

c h a r x = 3 ;

We assume that this variable is stored at address 62.

A pointer px is subsequently defined, assume it is stored at address 25, and
initialised with the address of x as follows:

c h a r ∗px = &x ;

The value of px, therefore, is 62.

Notice that a pointer is just another type of variable; it, also, has
an address and may in turn be pointed-to by a pointer-to-a-pointer
variable.

Prof. Michele Loreti
Language C: Scopes and Memory management

56 / 76

Pointers: An Example

Let us consider the following portion of code:

c h a r x = 3 ;

We assume that this variable is stored at address 62.

A pointer px is subsequently defined, assume it is stored at address 25, and
initialised with the address of x as follows:

c h a r ∗px = &x ;

The value of px, therefore, is 62.

Notice that a pointer is just another type of variable; it, also, has
an address and may in turn be pointed-to by a pointer-to-a-pointer
variable.

Prof. Michele Loreti
Language C: Scopes and Memory management

56 / 76

Pointers: An Example

Variable Type Address Value

x char 62 3
px char∗ 25 62

27

23

53

24

62

25

37

26

87

61

3

62

57

63

The pointer datatype (char∗) is crucial to retrieve values from
memory location!

Prof. Michele Loreti
Language C: Scopes and Memory management

57 / 76

Pointers: An Example

Variable Type Address Value

x char 62 3
px char∗ 25 62

27

23

53

24

62

25

37

26

87

61

3

62

57

63

The pointer datatype (char∗) is crucial to retrieve values from
memory location!

Prof. Michele Loreti
Language C: Scopes and Memory management

57 / 76

Pointers. . .

For the sake of simplicity, we have assumed that all the datatypes need the
same number of cells to be stored.

Memory cells may be grouped together to represent different variable
types.

On most machines, a cell is 8-bits long (i.e., one-byte). The number of
cells needed to store a given type can be obtained with the sizeof (type)

function.

C compiler uses the associated pointer type to behave appropriately with
sequences of a particular type (e.g., an array of doubles).

Prof. Michele Loreti
Language C: Scopes and Memory management

58 / 76

Pointers. . .

For the sake of simplicity, we have assumed that all the datatypes need the
same number of cells to be stored.

Memory cells may be grouped together to represent different variable
types.

On most machines, a cell is 8-bits long (i.e., one-byte). The number of
cells needed to store a given type can be obtained with the sizeof (type)

function.

C compiler uses the associated pointer type to behave appropriately with
sequences of a particular type (e.g., an array of doubles).

Prof. Michele Loreti
Language C: Scopes and Memory management

58 / 76

Pointers. . .

For the sake of simplicity, we have assumed that all the datatypes need the
same number of cells to be stored.

Memory cells may be grouped together to represent different variable
types.

On most machines, a cell is 8-bits long (i.e., one-byte). The number of
cells needed to store a given type can be obtained with the sizeof (type)

function.

C compiler uses the associated pointer type to behave appropriately with
sequences of a particular type (e.g., an array of doubles).

Prof. Michele Loreti
Language C: Scopes and Memory management

58 / 76

Pointers. . .

For the sake of simplicity, we have assumed that all the datatypes need the
same number of cells to be stored.

Memory cells may be grouped together to represent different variable
types.

On most machines, a cell is 8-bits long (i.e., one-byte). The number of
cells needed to store a given type can be obtained with the sizeof (type)

function.

C compiler uses the associated pointer type to behave appropriately with
sequences of a particular type (e.g., an array of doubles).

Prof. Michele Loreti
Language C: Scopes and Memory management

58 / 76

Pointer Syntax. . .

A pointer of a particular type is declared using the ∗ symbol, and the
address of a variable is obtained using the address-of operator &:

i n t i ;
i n t ∗ j = &i ;

or equivalently

i n t i , ∗ j ;
j = &i ;

It is worth noting that the ∗ in a list of definitions refers only to the
adjacent variable, and the spacing is irrelevant:

i n t ∗ i , j , ∗ k ;

Standard: int∗ i , j , ∗ k;

Prof. Michele Loreti
Language C: Scopes and Memory management

59 / 76

Pointer Syntax. . .

A pointer of a particular type is declared using the ∗ symbol, and the
address of a variable is obtained using the address-of operator &:

i n t i ;
i n t ∗ j = &i ;

or equivalently

i n t i , ∗ j ;
j = &i ;

It is worth noting that the ∗ in a list of definitions refers only to the
adjacent variable, and the spacing is irrelevant:

i n t ∗ i , j , ∗ k ;

Standard: int∗ i , j , ∗ k;

Prof. Michele Loreti
Language C: Scopes and Memory management

59 / 76

Pointer Syntax. . .

A pointer of a particular type is declared using the ∗ symbol, and the
address of a variable is obtained using the address-of operator &:

i n t i ;
i n t ∗ j = &i ;

or equivalently

i n t i , ∗ j ;
j = &i ;

It is worth noting that the ∗ in a list of definitions refers only to the
adjacent variable, and the spacing is irrelevant:

i n t ∗ i , j , ∗ k ;

Standard: int∗ i , j , ∗ k;

Prof. Michele Loreti
Language C: Scopes and Memory management

59 / 76

Pointer Syntax. . .

A pointer of a particular type is declared using the ∗ symbol, and the
address of a variable is obtained using the address-of operator &:

i n t i ;
i n t ∗ j = &i ;

or equivalently

i n t i , ∗ j ;
j = &i ;

It is worth noting that the ∗ in a list of definitions refers only to the
adjacent variable, and the spacing is irrelevant:

i n t ∗ i , j , ∗ k ;

Standard: int∗ i , j , ∗ k;

Prof. Michele Loreti
Language C: Scopes and Memory management

59 / 76

Pointer Syntax. . .

The value of the variable to which a pointer points can be obtained using
the indirection or dereferencing operator ∗:

i n t i = 2 ;

i n t ∗ j = &i ; /∗ D e f i n e a p o i n t e r−to− i n t j ,
and i n i t i a l i s e w i t h a d d r e s s o f i . ∗/

i n t x = ∗ j ; /∗ x i s a s s i g n e d t he v a l u e p o i n t e d by
v a l u e o f j (t h a t i s v a l u e o f i)
(t h a t i s , 2) . ∗/

The dereferencing use of ∗ should not be confused with its use in
pointer-declaration syntax!

� in declaration it means is a pointer-type variable;

� in all other circumstances means access the pointed-to object.

Prof. Michele Loreti
Language C: Scopes and Memory management

60 / 76

Pointer Syntax: Examples

c h a r c = ’A ’ ;
c h a r ∗pc = &c ; /∗ pc p o i n t s to c ∗/
d o u b l e d = 5 . 3 4 ;
d o u b l e ∗pd1 , ∗pd2 ;
∗pc = ’B ’ ; /∗ D e r e f e r e n c e d p o i n t e r :

c i s now e q u a l to ’B ’ . ∗/
pd1=&d ; /∗ pd1 p o i n t s to d ∗/
pd2 = pd1 ; /∗ pd2 and pd1 now both p o i n t to d . ∗/
∗pd1 = ∗pd2 ∗ 2 . 0 ; /∗ E q u i v a l e n t to d = d ∗ 2 . 0 ; ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

61 / 76

Pointers and type checking. . .

Pointers have different types specifying the type of data to which they can
point.

It is an error to assign a pointer to an object of a different type without an
explicit cast:

f l o a t i = 2 . f ;
u n s i g n e d l o n g ∗p1 = &i ; /∗ E r r o r : t y p e mismatch ,

won ’ t c o m p i l e . ∗/
u n s i g n e d l o n g ∗p2 = (u n s i g n e d l o n g ∗) &i ; /∗ OK,

but s t r a n g e . ∗/

The exception to this rule is the void∗ pointer, which may be assigned to a
pointer of any type without a cast.

Prof. Michele Loreti
Language C: Scopes and Memory management

62 / 76

Pointers and type checking. . .

Pointers have different types specifying the type of data to which they can
point.

It is an error to assign a pointer to an object of a different type without an
explicit cast:

f l o a t i = 2 . f ;
u n s i g n e d l o n g ∗p1 = &i ; /∗ E r r o r : t y p e mismatch ,

won ’ t c o m p i l e . ∗/
u n s i g n e d l o n g ∗p2 = (u n s i g n e d l o n g ∗) &i ; /∗ OK,

but s t r a n g e . ∗/

The exception to this rule is the void∗ pointer, which may be assigned to a
pointer of any type without a cast.

Prof. Michele Loreti
Language C: Scopes and Memory management

62 / 76

Pointers and type checking. . .

Pointers have different types specifying the type of data to which they can
point.

It is an error to assign a pointer to an object of a different type without an
explicit cast:

f l o a t i = 2 . f ;
u n s i g n e d l o n g ∗p1 = &i ; /∗ E r r o r : t y p e mismatch ,

won ’ t c o m p i l e . ∗/
u n s i g n e d l o n g ∗p2 = (u n s i g n e d l o n g ∗) &i ; /∗ OK,

but s t r a n g e . ∗/

The exception to this rule is the void∗ pointer, which may be assigned to a
pointer of any type without a cast.

Prof. Michele Loreti
Language C: Scopes and Memory management

62 / 76

Null pointer. . .

It is dangerous practice to leave a pointer uninitialised, pointing to an
arbitrary address.

If a pointer is supposed to point nowhere, it should do so explicitly via the
NULL pointer.

NULL is a symbolic constant defined in the standard headers stdio .h and
stddef .h:

#d e f i n e NULL ((v o i d ∗) 0)

The constant values 0 or 0L may be used in place of NULL to specify a
null-pointer value, but the symbolic constant is usually the more readable
option.

Prof. Michele Loreti
Language C: Scopes and Memory management

63 / 76

Null pointer. . .

It is dangerous practice to leave a pointer uninitialised, pointing to an
arbitrary address.

If a pointer is supposed to point nowhere, it should do so explicitly via the
NULL pointer.

NULL is a symbolic constant defined in the standard headers stdio .h and
stddef .h:

#d e f i n e NULL ((v o i d ∗) 0)

The constant values 0 or 0L may be used in place of NULL to specify a
null-pointer value, but the symbolic constant is usually the more readable
option.

Prof. Michele Loreti
Language C: Scopes and Memory management

63 / 76

Null pointer. . .

It is dangerous practice to leave a pointer uninitialised, pointing to an
arbitrary address.

If a pointer is supposed to point nowhere, it should do so explicitly via the
NULL pointer.

NULL is a symbolic constant defined in the standard headers stdio .h and
stddef .h:

#d e f i n e NULL ((v o i d ∗) 0)

The constant values 0 or 0L may be used in place of NULL to specify a
null-pointer value, but the symbolic constant is usually the more readable
option.

Prof. Michele Loreti
Language C: Scopes and Memory management

63 / 76

Null pointer. . .

It is dangerous practice to leave a pointer uninitialised, pointing to an
arbitrary address.

If a pointer is supposed to point nowhere, it should do so explicitly via the
NULL pointer.

NULL is a symbolic constant defined in the standard headers stdio .h and
stddef .h:

#d e f i n e NULL ((v o i d ∗) 0)

The constant values 0 or 0L may be used in place of NULL to specify a
null-pointer value, but the symbolic constant is usually the more readable
option.

Prof. Michele Loreti
Language C: Scopes and Memory management

63 / 76

Const Pointers. . .

Pointers may be declared const; and this may be done in one of two ways.

The first, and most common, is to declare the pointer const so that the
object to which it points cannot be changed.

i n t i = 5 , j = 6 ;
c o n s t i n t ∗p = &i ;
∗p = j ; /∗ I n v a l i d . Cannot change i v i a p . ∗/

However, the pointer itself may be changed to point to another object:

i n t i = 5 , j = 6 ;
c o n s t i n t ∗p = &i ;
p = &j ; /∗ V a l i d . p now p o i n t s to j . ∗/
∗p = i ; /∗ I n v a l i d . Cannot change j v i a p . ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

64 / 76

Const Pointers. . .

Pointers may be declared const; and this may be done in one of two ways.

The first, and most common, is to declare the pointer const so that the
object to which it points cannot be changed.

i n t i = 5 , j = 6 ;
c o n s t i n t ∗p = &i ;
∗p = j ; /∗ I n v a l i d . Cannot change i v i a p . ∗/

However, the pointer itself may be changed to point to another object:

i n t i = 5 , j = 6 ;
c o n s t i n t ∗p = &i ;
p = &j ; /∗ V a l i d . p now p o i n t s to j . ∗/
∗p = i ; /∗ I n v a l i d . Cannot change j v i a p . ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

64 / 76

Const Pointers. . .

Pointers may be declared const; and this may be done in one of two ways.

The first, and most common, is to declare the pointer const so that the
object to which it points cannot be changed.

i n t i = 5 , j = 6 ;
c o n s t i n t ∗p = &i ;
∗p = j ; /∗ I n v a l i d . Cannot change i v i a p . ∗/

However, the pointer itself may be changed to point to another object:

i n t i = 5 , j = 6 ;
c o n s t i n t ∗p = &i ;
p = &j ; /∗ V a l i d . p now p o i n t s to j . ∗/
∗p = i ; /∗ I n v a l i d . Cannot change j v i a p . ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

64 / 76

Const Pointers. . .

The second form of const declaration specifies a pointer that may only refer
to one fixed address.

That is, the pointer value may not change, but the value of the object to
which it points may change:

i n t i = 5 , j = 6 ;
i n t ∗ c o n s t p = &i ;
∗p = j ; /∗ V a l i d . i i s now 6 ∗/
p = &j ; /∗ I n v a l i d . p must a l w a y s p o i n t to i . ∗/

It is possible to combine these two forms to define a non-changing pointer
to a non-changeable data:

i n t i = 5 , j = 6 ;
c o n s t i n t ∗ c o n s t p = &i ;
∗p = j ; /∗ I n v a l i d . i cannot be changed v i a p . ∗/
p = &j ; /∗ I n v a l i d . p must a l w a y s p o i n t to i . ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

65 / 76

Const Pointers. . .

The second form of const declaration specifies a pointer that may only refer
to one fixed address.

That is, the pointer value may not change, but the value of the object to
which it points may change:

i n t i = 5 , j = 6 ;
i n t ∗ c o n s t p = &i ;
∗p = j ; /∗ V a l i d . i i s now 6 ∗/
p = &j ; /∗ I n v a l i d . p must a l w a y s p o i n t to i . ∗/

It is possible to combine these two forms to define a non-changing pointer
to a non-changeable data:

i n t i = 5 , j = 6 ;
c o n s t i n t ∗ c o n s t p = &i ;
∗p = j ; /∗ I n v a l i d . i cannot be changed v i a p . ∗/
p = &j ; /∗ I n v a l i d . p must a l w a y s p o i n t to i . ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

65 / 76

Const Pointers. . .

The second form of const declaration specifies a pointer that may only refer
to one fixed address.

That is, the pointer value may not change, but the value of the object to
which it points may change:

i n t i = 5 , j = 6 ;
i n t ∗ c o n s t p = &i ;
∗p = j ; /∗ V a l i d . i i s now 6 ∗/
p = &j ; /∗ I n v a l i d . p must a l w a y s p o i n t to i . ∗/

It is possible to combine these two forms to define a non-changing pointer
to a non-changeable data:

i n t i = 5 , j = 6 ;
c o n s t i n t ∗ c o n s t p = &i ;
∗p = j ; /∗ I n v a l i d . i cannot be changed v i a p . ∗/
p = &j ; /∗ I n v a l i d . p must a l w a y s p o i n t to i . ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

65 / 76

Call by reference. . .

When a variable is passed to a function, it is always passed by value. That
is, the variable is copied to the formal parameter of the function argument
list.

As a result, any changes made to the local variables within the function
will not affect the variables of the calling function.

swap (a , b) ; /∗ Pass v a l u e s o f a and b , r e s p e c t i v e l y . ∗/

v o i d swap (i n t x , i n t y)
/∗ x and y a r e c o p i e s o f t h e p a s s e d arguments . ∗/
{

i n t tmp = x ; /∗ x i s u n r e l a t e d to a ∗/
x = y ; /∗ t h i s o p e r a t i o n does not a f f e c t a . ∗/
y = tmp ;

}

Prof. Michele Loreti
Language C: Scopes and Memory management

66 / 76

Call by reference. . .

When a variable is passed to a function, it is always passed by value. That
is, the variable is copied to the formal parameter of the function argument
list.

As a result, any changes made to the local variables within the function
will not affect the variables of the calling function.

swap (a , b) ; /∗ Pass v a l u e s o f a and b , r e s p e c t i v e l y . ∗/

v o i d swap (i n t x , i n t y)
/∗ x and y a r e c o p i e s o f t h e p a s s e d arguments . ∗/
{

i n t tmp = x ; /∗ x i s u n r e l a t e d to a ∗/
x = y ; /∗ t h i s o p e r a t i o n does not a f f e c t a . ∗/
y = tmp ;

}

Prof. Michele Loreti
Language C: Scopes and Memory management

66 / 76

Call by reference. . .

When a variable is passed to a function, it is always passed by value. That
is, the variable is copied to the formal parameter of the function argument
list.

As a result, any changes made to the local variables within the function
will not affect the variables of the calling function.

swap (a , b) ; /∗ Pass v a l u e s o f a and b , r e s p e c t i v e l y . ∗/

v o i d swap (i n t x , i n t y)
/∗ x and y a r e c o p i e s o f t h e p a s s e d arguments . ∗/
{

i n t tmp = x ; /∗ x i s u n r e l a t e d to a ∗/
x = y ; /∗ t h i s o p e r a t i o n does not a f f e c t a . ∗/
y = tmp ;

}

Prof. Michele Loreti
Language C: Scopes and Memory management

66 / 76

Call by reference. . .

The desired effect of this function can be achieved by using pointers.

Pointers, as with any other variable, are passed by value, but their values
are addresses which still point to the original variables:

swap(&a , &b) ; /∗ Pass p o i n t e r s to a and b ∗/
v o i d swap (i n t ∗ px , i n t ∗ py)
/∗ px and py a r e c o p i e s o f t h e p a s s e d arguments . ∗/
{

i n t tmp = ∗px ; /∗ The v a l u e o f px i s s t i l l t h e
a d d r e s s o f a ∗/

∗px = ∗py ; /∗ so t h i s d e r e f e r e n c i n g o p e r a t i o n
i s e q u i v a l e n t to a = b . ∗/

∗py = tmp ;
}

Prof. Michele Loreti
Language C: Scopes and Memory management

67 / 76

Call by reference. . .

The desired effect of this function can be achieved by using pointers.

Pointers, as with any other variable, are passed by value, but their values
are addresses which still point to the original variables:

swap(&a , &b) ; /∗ Pass p o i n t e r s to a and b ∗/
v o i d swap (i n t ∗ px , i n t ∗ py)
/∗ px and py a r e c o p i e s o f t h e p a s s e d arguments . ∗/
{

i n t tmp = ∗px ; /∗ The v a l u e o f px i s s t i l l t h e
a d d r e s s o f a ∗/

∗px = ∗py ; /∗ so t h i s d e r e f e r e n c i n g o p e r a t i o n
i s e q u i v a l e n t to a = b . ∗/

∗py = tmp ;
}

Prof. Michele Loreti
Language C: Scopes and Memory management

67 / 76

Call by reference. . .

The desired effect of this function can be achieved by using pointers.

Pointers, as with any other variable, are passed by value, but their values
are addresses which still point to the original variables:

swap(&a , &b) ; /∗ Pass p o i n t e r s to a and b ∗/
v o i d swap (i n t ∗ px , i n t ∗ py)
/∗ px and py a r e c o p i e s o f t h e p a s s e d arguments . ∗/
{

i n t tmp = ∗px ; /∗ The v a l u e o f px i s s t i l l t h e
a d d r e s s o f a ∗/

∗px = ∗py ; /∗ so t h i s d e r e f e r e n c i n g o p e r a t i o n
i s e q u i v a l e n t to a = b . ∗/

∗py = tmp ;
}

Prof. Michele Loreti
Language C: Scopes and Memory management

67 / 76

Pointers and arrays. . .

Pointers and arrays are strongly related; so much so that C programmers
often assume they are the same thing.

This is frequently the case, but not always.

Whenever an array name appears in an expression, it is automatically
converted to a pointer to its first element:

u n s i g n e d b u f f e r [2 5 6] ;
u n s i g n e d ∗ p b u f f 1 = b u f f e r ; /∗ B u f f e r c o n v e r t e d to

p o i n t e r , & not r e q u i r e d . ∗/

u n s i g n e d ∗ p b u f f 2 = b u f f e r + 5 ;
/∗ A ” p o i n t e r−p l u s−o f f s e t ”

e x p r e s s i o n . ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

68 / 76

Pointers and arrays. . .

Pointers and arrays are strongly related; so much so that C programmers
often assume they are the same thing.

This is frequently the case, but not always.

Whenever an array name appears in an expression, it is automatically
converted to a pointer to its first element:

u n s i g n e d b u f f e r [2 5 6] ;
u n s i g n e d ∗ p b u f f 1 = b u f f e r ; /∗ B u f f e r c o n v e r t e d to

p o i n t e r , & not r e q u i r e d . ∗/

u n s i g n e d ∗ p b u f f 2 = b u f f e r + 5 ;
/∗ A ” p o i n t e r−p l u s−o f f s e t ”

e x p r e s s i o n . ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

68 / 76

Pointers and arrays. . .

Pointers and arrays are strongly related; so much so that C programmers
often assume they are the same thing.

This is frequently the case, but not always.

Whenever an array name appears in an expression, it is automatically
converted to a pointer to its first element:

u n s i g n e d b u f f e r [2 5 6] ;
u n s i g n e d ∗ p b u f f 1 = b u f f e r ; /∗ B u f f e r c o n v e r t e d to

p o i n t e r , & not r e q u i r e d . ∗/

u n s i g n e d ∗ p b u f f 2 = b u f f e r + 5 ;
/∗ A ” p o i n t e r−p l u s−o f f s e t ”

e x p r e s s i o n . ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

68 / 76

Pointers and arrays. . .

An array name and a pointer to an array may be used interchangeably in
many circumstances, such as array indexing:

c h a r l e t t e r s [2 6] ;
c h a r ∗pc1 = l e t t e r s ; /∗ E q u i v a l e n t p o i n t e r v a l u e s . ∗/
c h a r ∗pc2 = & l e t t e r s ;
c h a r ∗pc3 = & l e t t e r s [0] ;

l e t t e r s [4] = ’ e ’ ; /∗ E q u i v a l e n t i n d e x e s . ∗/
pc1 [4] = ’ e ’ ;
∗(l e t t e r s + 4) = ’ e ’ ;
∗(pc2 + 4) = ’ e ’ ;

pc3 = & l e t t e r s [1 0] ; /∗ E q u i v a l e n t a d d r e s s e s . ∗/
pc3 = &pc1 [1 0] ;
pc3 = l e t t e r s + 1 0 ;
pc3 = pc2 + 1 0 ;

Prof. Michele Loreti
Language C: Scopes and Memory management

69 / 76

Pointers and arrays. . .
Differences

An array is not a variable; its value cannot be changed.

i n t a1 [1 0] , a2 [1 0] ;
i n t ∗pa = a1 ;
a1 = a2 ; /∗ E r r o r : won ’ t c o m p i l e . ∗/
a1++; /∗ E r r o r : won ’ t c o m p i l e . ∗/
pa++; /∗ Fine , a p o i n t e r i s a v a r i a b l e . ∗/

An array name always refers to the beginning of a section of allocated
memory, while a pointer may point anywhere at all.

The size of an array is the number of characters of memory allocated,
while the size of a pointer is just the size of the pointer variable.

d o u b l e a1 [1 0] ;
d o u b l e ∗pa = a1 ;
s i z e t s1 = s i z e o f (a1) ; /∗ s1 e q u a l s 10∗ s i z e o f (d o u b l e) ∗/
s i z e t s2 = s i z e o f (pa) ; /∗ s2 e q u a l s s i z e o f (d o u b l e ∗) ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

70 / 76

Pointers and arrays. . .
Differences

An array is not a variable; its value cannot be changed.

i n t a1 [1 0] , a2 [1 0] ;
i n t ∗pa = a1 ;
a1 = a2 ; /∗ E r r o r : won ’ t c o m p i l e . ∗/
a1++; /∗ E r r o r : won ’ t c o m p i l e . ∗/
pa++; /∗ Fine , a p o i n t e r i s a v a r i a b l e . ∗/

An array name always refers to the beginning of a section of allocated
memory, while a pointer may point anywhere at all.

The size of an array is the number of characters of memory allocated,
while the size of a pointer is just the size of the pointer variable.

d o u b l e a1 [1 0] ;
d o u b l e ∗pa = a1 ;
s i z e t s1 = s i z e o f (a1) ; /∗ s1 e q u a l s 10∗ s i z e o f (d o u b l e) ∗/
s i z e t s2 = s i z e o f (pa) ; /∗ s2 e q u a l s s i z e o f (d o u b l e ∗) ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

70 / 76

Pointers and arrays. . .
Differences

An array is not a variable; its value cannot be changed.

i n t a1 [1 0] , a2 [1 0] ;
i n t ∗pa = a1 ;
a1 = a2 ; /∗ E r r o r : won ’ t c o m p i l e . ∗/
a1++; /∗ E r r o r : won ’ t c o m p i l e . ∗/
pa++; /∗ Fine , a p o i n t e r i s a v a r i a b l e . ∗/

An array name always refers to the beginning of a section of allocated
memory, while a pointer may point anywhere at all.

The size of an array is the number of characters of memory allocated,
while the size of a pointer is just the size of the pointer variable.

d o u b l e a1 [1 0] ;
d o u b l e ∗pa = a1 ;
s i z e t s1 = s i z e o f (a1) ; /∗ s1 e q u a l s 10∗ s i z e o f (d o u b l e) ∗/
s i z e t s2 = s i z e o f (pa) ; /∗ s2 e q u a l s s i z e o f (d o u b l e ∗) ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

70 / 76

Pointer arighmetic

Let p be a pointer to some element of an array. . .

. . . p++ increments p to point to the next element;

. . . \p += n increments it point n elements beyond where it did originally.

f l o a t f v a l , a r r a y [1 0] ;
f l o a t ∗p1 , ∗p2 , ∗p3 = &a r r a y [5] ;
i n t i =2, j ;
p1 = NULL ; /∗ Ass ignment to NULL (o r to 0 o r 0L) . ∗/
p2 = &f v a l ; /∗ Ass ignment to an a d d r e s s . ∗/
p1 = p2 ; /∗ Ass ignment to a n o t h e r p o i n t e r (o f same t y p e) . ∗/
p2 = p3 − 4 ; /∗ A d d i t i o n or s u b t r a c t i o n by an i n t e g e r : a

p o i n t e r−o f f s e t e x p r e s s i o n . ∗/
p2+=i ; /∗ Another p o i n t e r−o f f s e t e x p r e s s i o n . ∗/
j = p3 − p2 ; /∗ P o i n t e r s u b t r a c t i o n : g i v e s t h e number o f

e l e m e n t s between p2 and p3 . ∗/
i = p2 < p3 ; /∗ R e l a t i o n a l o p e r a t i o n s <, >, ==, != , <=, >= ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

71 / 76

Pointer arighmetic

Let p be a pointer to some element of an array. . .

. . . p++ increments p to point to the next element;

. . . \p += n increments it point n elements beyond where it did originally.

f l o a t f v a l , a r r a y [1 0] ;
f l o a t ∗p1 , ∗p2 , ∗p3 = &a r r a y [5] ;
i n t i =2, j ;
p1 = NULL ; /∗ Ass ignment to NULL (o r to 0 o r 0L) . ∗/
p2 = &f v a l ; /∗ Ass ignment to an a d d r e s s . ∗/
p1 = p2 ; /∗ Ass ignment to a n o t h e r p o i n t e r (o f same t y p e) . ∗/
p2 = p3 − 4 ; /∗ A d d i t i o n or s u b t r a c t i o n by an i n t e g e r : a

p o i n t e r−o f f s e t e x p r e s s i o n . ∗/
p2+=i ; /∗ Another p o i n t e r−o f f s e t e x p r e s s i o n . ∗/
j = p3 − p2 ; /∗ P o i n t e r s u b t r a c t i o n : g i v e s t h e number o f

e l e m e n t s between p2 and p3 . ∗/
i = p2 < p3 ; /∗ R e l a t i o n a l o p e r a t i o n s <, >, ==, != , <=, >= ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

71 / 76

Pointer arighmetic

Let p be a pointer to some element of an array. . .

. . . p++ increments p to point to the next element;

. . . \p += n increments it point n elements beyond where it did originally.

f l o a t f v a l , a r r a y [1 0] ;
f l o a t ∗p1 , ∗p2 , ∗p3 = &a r r a y [5] ;
i n t i =2, j ;
p1 = NULL ; /∗ Ass ignment to NULL (o r to 0 o r 0L) . ∗/
p2 = &f v a l ; /∗ Ass ignment to an a d d r e s s . ∗/
p1 = p2 ; /∗ Ass ignment to a n o t h e r p o i n t e r (o f same t y p e) . ∗/
p2 = p3 − 4 ; /∗ A d d i t i o n or s u b t r a c t i o n by an i n t e g e r : a

p o i n t e r−o f f s e t e x p r e s s i o n . ∗/
p2+=i ; /∗ Another p o i n t e r−o f f s e t e x p r e s s i o n . ∗/
j = p3 − p2 ; /∗ P o i n t e r s u b t r a c t i o n : g i v e s t h e number o f

e l e m e n t s between p2 and p3 . ∗/
i = p2 < p3 ; /∗ R e l a t i o n a l o p e r a t i o n s <, >, ==, != , <=, >= ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

71 / 76

Pointer arighmetic

Let p be a pointer to some element of an array. . .

. . . p++ increments p to point to the next element;

. . . \p += n increments it point n elements beyond where it did originally.

f l o a t f v a l , a r r a y [1 0] ;
f l o a t ∗p1 , ∗p2 , ∗p3 = &a r r a y [5] ;
i n t i =2, j ;
p1 = NULL ; /∗ Ass ignment to NULL (o r to 0 o r 0L) . ∗/
p2 = &f v a l ; /∗ Ass ignment to an a d d r e s s . ∗/
p1 = p2 ; /∗ Ass ignment to a n o t h e r p o i n t e r (o f same t y p e) . ∗/
p2 = p3 − 4 ; /∗ A d d i t i o n or s u b t r a c t i o n by an i n t e g e r : a

p o i n t e r−o f f s e t e x p r e s s i o n . ∗/
p2+=i ; /∗ Another p o i n t e r−o f f s e t e x p r e s s i o n . ∗/
j = p3 − p2 ; /∗ P o i n t e r s u b t r a c t i o n : g i v e s t h e number o f

e l e m e n t s between p2 and p3 . ∗/
i = p2 < p3 ; /∗ R e l a t i o n a l o p e r a t i o n s <, >, ==, != , <=, >= ∗/

Prof. Michele Loreti
Language C: Scopes and Memory management

71 / 76

Return Values and Pointers

A function may return a pointer:

i n t ∗ f u n c r e t u r n s p o i n t e r (v o i d) ;

Warning: This may be the source of errors!

i n t ∗ m i s g u i d e d (v o i d)
{

i n t a r r a y [1 0] , i ; /∗ a r r a y has l o c a l e x t e n t :
d e s t r o y e d a t end−of−b l o c k . ∗/

f o r (i = 0 ; i < 1 0 ; ++i)
a r r a y [i] = i ;

r e t u r n a r r a y ;
}

Prof. Michele Loreti
Language C: Scopes and Memory management

72 / 76

Return Values and Pointers

A function may return a pointer:

i n t ∗ f u n c r e t u r n s p o i n t e r (v o i d) ;

Warning: This may be the source of errors!

i n t ∗ m i s g u i d e d (v o i d)
{

i n t a r r a y [1 0] , i ; /∗ a r r a y has l o c a l e x t e n t :
d e s t r o y e d a t end−of−b l o c k . ∗/

f o r (i = 0 ; i < 1 0 ; ++i)
a r r a y [i] = i ;

r e t u r n a r r a y ;
}

Prof. Michele Loreti
Language C: Scopes and Memory management

72 / 76

Return Values and Pointers

A function may return a pointer:

i n t ∗ f u n c r e t u r n s p o i n t e r (v o i d) ;

Warning: This may be the source of errors!

i n t ∗ m i s g u i d e d (v o i d)
{

i n t a r r a y [1 0] , i ; /∗ a r r a y has l o c a l e x t e n t :
d e s t r o y e d a t end−of−b l o c k . ∗/

f o r (i = 0 ; i < 1 0 ; ++i)
a r r a y [i] = i ;

r e t u r n a r r a y ;
}

Prof. Michele Loreti
Language C: Scopes and Memory management

72 / 76

Return Values and Pointers

A function may return a pointer:

i n t ∗ f u n c r e t u r n s p o i n t e r (v o i d) ;

Warning: This may be the source of errors!

i n t ∗ m i s g u i d e d (v o i d)
{

i n t a r r a y [1 0] , i ; /∗ a r r a y has l o c a l e x t e n t :
d e s t r o y e d a t end−of−b l o c k . ∗/

f o r (i = 0 ; i < 1 0 ; ++i)
a r r a y [i] = i ;

r e t u r n a r r a y ;
}

Prof. Michele Loreti
Language C: Scopes and Memory management

72 / 76

Return Values and Pointers

A function must return a reference to a memory location that survives the
function execution.

Example 1: A reference to a static variable

d o u b l e ∗ g e o m e t r i c g r o w t h (v o i d)
{

s t a t i c d o u b l e grows = 0 . 1 ;
grows ∗= 1 . 1 ;
r e t u r n &grows ;

}

Example 2: A reference to an element within a passed array

c h a r ∗ f i n d f i r s t (c h a r ∗ s t r , c h a r c)
{

w h i l e (∗ s t r++ != ’ \0 ’)
i f (∗ s t r == c) r e t u r n s t r ;

r e t u r n NULL ;
}

Prof. Michele Loreti
Language C: Scopes and Memory management

73 / 76

Return Values and Pointers

A function must return a reference to a memory location that survives the
function execution.

Example 1: A reference to a static variable

d o u b l e ∗ g e o m e t r i c g r o w t h (v o i d)
{

s t a t i c d o u b l e grows = 0 . 1 ;
grows ∗= 1 . 1 ;
r e t u r n &grows ;

}

Example 2: A reference to an element within a passed array

c h a r ∗ f i n d f i r s t (c h a r ∗ s t r , c h a r c)
{

w h i l e (∗ s t r++ != ’ \0 ’)
i f (∗ s t r == c) r e t u r n s t r ;

r e t u r n NULL ;
}

Prof. Michele Loreti
Language C: Scopes and Memory management

73 / 76

Return Values and Pointers

A function must return a reference to a memory location that survives the
function execution.

Example 1: A reference to a static variable

d o u b l e ∗ g e o m e t r i c g r o w t h (v o i d)
{

s t a t i c d o u b l e grows = 0 . 1 ;
grows ∗= 1 . 1 ;
r e t u r n &grows ;

}

Example 2: A reference to an element within a passed array

c h a r ∗ f i n d f i r s t (c h a r ∗ s t r , c h a r c)
{

w h i l e (∗ s t r++ != ’ \0 ’)
i f (∗ s t r == c) r e t u r n s t r ;

r e t u r n NULL ;
}

Prof. Michele Loreti
Language C: Scopes and Memory management

73 / 76

Function Pointers

Function pointers are a very useful mechanism for selecting, substituting or
grouping together functions of a particular form.

The declaration of a function pointer must specify the number and type of
the function arguments and the function return type.

d o u b l e (∗ p f) (double , i n t) ;

The parenthesis around ∗pf are crucial to specify that pf is a function
pointer and not a function returning pointer!

Prof. Michele Loreti
Language C: Scopes and Memory management

74 / 76

Function Pointers

Function pointers are a very useful mechanism for selecting, substituting or
grouping together functions of a particular form.

The declaration of a function pointer must specify the number and type of
the function arguments and the function return type.

d o u b l e (∗ p f) (double , i n t) ;

The parenthesis around ∗pf are crucial to specify that pf is a function
pointer and not a function returning pointer!

Prof. Michele Loreti
Language C: Scopes and Memory management

74 / 76

Function Pointers

Function pointers are a very useful mechanism for selecting, substituting or
grouping together functions of a particular form.

The declaration of a function pointer must specify the number and type of
the function arguments and the function return type.

d o u b l e (∗ p f) (double , i n t) ;

The parenthesis around ∗pf are crucial to specify that pf is a function
pointer and not a function returning pointer!

Prof. Michele Loreti
Language C: Scopes and Memory management

74 / 76

Function Pointers

Function pointers are a very useful mechanism for selecting, substituting or
grouping together functions of a particular form.

The declaration of a function pointer must specify the number and type of
the function arguments and the function return type.

d o u b l e (∗ p f) (double , i n t) ;

The parenthesis around ∗pf are crucial to specify that pf is a function
pointer and not a function returning pointer!

Prof. Michele Loreti
Language C: Scopes and Memory management

74 / 76

Function Pointers: Example (Part1)

#i n c l u d e <s t d i o . h>
#i n c l u d e <a s s e r t . h>

d o u b l e add (d o u b l e a , d o u b l e b) {
r e t u r n a + b ;

}

d o u b l e sub (d o u b l e a , d o u b l e b) {
r e t u r n a − b ;

}

d o u b l e mult (d o u b l e a , d o u b l e b) {
r e t u r n a ∗ b ;

}

d o u b l e d i v (d o u b l e a , d o u b l e b) {
a s s e r t (b != 0 . 0) ; r e t u r n a / b ;

}

Prof. Michele Loreti
Language C: Scopes and Memory management

75 / 76

Function Pointers: Example (Part2)

v o i d e x e c u t e o p e r a t i o n (d o u b l e (∗ f) (double , d o u b l e) , d o u b l e x ,
d o u b l e y)

{
d o u b l e r e s u l t = f (x , y) ;
p r i n t f (” R e s u l t o f o p e r a t i o n on %3.2 f and %3.2 f i s %7.4 f \n” ,

x , y , r e s u l t) ;
}

i n t main (v o i d)
{

d o u b l e v a l 1 =4.3 , v a l 2 =5.7 ;
e x e c u t e o p e r a t i o n (add , v a l 1 , v a l 2) ;
e x e c u t e o p e r a t i o n (sub , v a l 1 , v a l 2) ;
e x e c u t e o p e r a t i o n (mult , v a l 1 , v a l 2) ;
e x e c u t e o p e r a t i o n (d iv , v a l 1 , v a l 2) ;

}

Prof. Michele Loreti
Language C: Scopes and Memory management

76 / 76

