
Arrays and Strings

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Arrays and Strings 79 / 96

Arrays. . .

An array is a group of variables of a particular type occupying a contiguous
region of memory.

In C, array elements are numbered from 0, so that an array of size N is
indexed from 0 to N−1.

An array must contain at least one element, and it is an error to define an
empty array.

A variable of type array is declared by adding square brackets ([,]) after it:

i n t a r r a y []

The number of elements in the array can be declared:

doub l e a r r a y [SIZE]

Prof. Michele Loreti Arrays and Strings 80 / 96

Arrays. . .

An array is a group of variables of a particular type occupying a contiguous
region of memory.

In C, array elements are numbered from 0, so that an array of size N is
indexed from 0 to N−1.

An array must contain at least one element, and it is an error to define an
empty array.

A variable of type array is declared by adding square brackets ([,]) after it:

i n t a r r a y []

The number of elements in the array can be declared:

doub l e a r r a y [SIZE]

Prof. Michele Loreti Arrays and Strings 80 / 96

Arrays. . .

An array is a group of variables of a particular type occupying a contiguous
region of memory.

In C, array elements are numbered from 0, so that an array of size N is
indexed from 0 to N−1.

An array must contain at least one element, and it is an error to define an
empty array.

A variable of type array is declared by adding square brackets ([,]) after it:

i n t a r r a y []

The number of elements in the array can be declared:

doub l e a r r a y [SIZE]

Prof. Michele Loreti Arrays and Strings 80 / 96

Arrays. . .

An array is a group of variables of a particular type occupying a contiguous
region of memory.

In C, array elements are numbered from 0, so that an array of size N is
indexed from 0 to N−1.

An array must contain at least one element, and it is an error to define an
empty array.

A variable of type array is declared by adding square brackets ([,]) after it:

i n t a r r a y []

The number of elements in the array can be declared:

doub l e a r r a y [SIZE]

Prof. Michele Loreti Arrays and Strings 80 / 96

Arrays. . .

An array is a group of variables of a particular type occupying a contiguous
region of memory.

In C, array elements are numbered from 0, so that an array of size N is
indexed from 0 to N−1.

An array must contain at least one element, and it is an error to define an
empty array.

A variable of type array is declared by adding square brackets ([,]) after it:

i n t a r r a y []

The number of elements in the array can be declared:

doub l e a r r a y [SIZE]

Prof. Michele Loreti Arrays and Strings 80 / 96

Array initialisation. . .

Remember: As for any other type of variable, arrays may have local,
external or static scope!

Arrays with static extent have their elements initialised to zero by default,
but arrays with local extent are not initialised by default, so their elements
have arbitrary values.

An array is explicitly initialised by using an initialiser list (a list of values of
the appropriate type enclosed in braces and separated by commas):

i n t days [1 2] =
{ 31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31 } ;

Prof. Michele Loreti Arrays and Strings 81 / 96

Array initialisation. . .

Remember: As for any other type of variable, arrays may have local,
external or static scope!

Arrays with static extent have their elements initialised to zero by default

,
but arrays with local extent are not initialised by default, so their elements
have arbitrary values.

An array is explicitly initialised by using an initialiser list (a list of values of
the appropriate type enclosed in braces and separated by commas):

i n t days [1 2] =
{ 31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31 } ;

Prof. Michele Loreti Arrays and Strings 81 / 96

Array initialisation. . .

Remember: As for any other type of variable, arrays may have local,
external or static scope!

Arrays with static extent have their elements initialised to zero by default,
but arrays with local extent are not initialised by default, so their elements
have arbitrary values.

An array is explicitly initialised by using an initialiser list (a list of values of
the appropriate type enclosed in braces and separated by commas):

i n t days [1 2] =
{ 31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31 } ;

Prof. Michele Loreti Arrays and Strings 81 / 96

Array initialisation. . .

Remember: As for any other type of variable, arrays may have local,
external or static scope!

Arrays with static extent have their elements initialised to zero by default,
but arrays with local extent are not initialised by default, so their elements
have arbitrary values.

An array is explicitly initialised by using an initialiser list (a list of values of
the appropriate type enclosed in braces and separated by commas):

i n t days [1 2] =
{ 31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31 } ;

Prof. Michele Loreti Arrays and Strings 81 / 96

Array initialisation. . .

If the number of values in the initialiser list is less than the size of the
array, the remaining elements of the array are initialised to zero:

i n t a l l Z e r o [1 0] = { 0 } ;

It is an error to have more initialisers than the size of the array!

If the size of an array with an initialiser list is not specified, the array will
automatically be allocated memory to match the number of elements in
the list:

i n t days [] = //The s i z e o f t h i s a r r a y i s 12 !
{ 31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31 } ;

Prof. Michele Loreti Arrays and Strings 82 / 96

Array initialisation. . .

If the number of values in the initialiser list is less than the size of the
array, the remaining elements of the array are initialised to zero:

i n t a l l Z e r o [1 0] = { 0 } ;

It is an error to have more initialisers than the size of the array!

If the size of an array with an initialiser list is not specified, the array will
automatically be allocated memory to match the number of elements in
the list:

i n t days [] = //The s i z e o f t h i s a r r a y i s 12 !
{ 31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31 } ;

Prof. Michele Loreti Arrays and Strings 82 / 96

Array initialisation. . .

If the number of values in the initialiser list is less than the size of the
array, the remaining elements of the array are initialised to zero:

i n t a l l Z e r o [1 0] = { 0 } ;

It is an error to have more initialisers than the size of the array!

If the size of an array with an initialiser list is not specified, the array will
automatically be allocated memory to match the number of elements in
the list:

i n t days [] = //The s i z e o f t h i s a r r a y i s 12 !
{ 31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31 } ;

Prof. Michele Loreti Arrays and Strings 82 / 96

Size of an array. . .

Function sizeof can be used to determine the size of the array.

Warning: the result of sizeof (e) may be confusing:

� if e is a value or a type, it indicates the amount of memory needed to
store that value (or type);

� if e is a variable, it indicates the amount of memory allocated to store
that variable.

The size of an array is the amount of memory allocated for all the
elements in the array!

Prof. Michele Loreti Arrays and Strings 83 / 96

Size of an array. . .

Function sizeof can be used to determine the size of the array.

Warning: the result of sizeof (e) may be confusing:

� if e is a value or a type, it indicates the amount of memory needed to
store that value (or type);

� if e is a variable, it indicates the amount of memory allocated to store
that variable.

The size of an array is the amount of memory allocated for all the
elements in the array!

Prof. Michele Loreti Arrays and Strings 83 / 96

Size of an array. . .

Function sizeof can be used to determine the size of the array.

Warning: the result of sizeof (e) may be confusing:

� if e is a value or a type, it indicates the amount of memory needed to
store that value (or type);

� if e is a variable, it indicates the amount of memory allocated to store
that variable.

The size of an array is the amount of memory allocated for all the
elements in the array!

Prof. Michele Loreti Arrays and Strings 83 / 96

Size of an array. . .

Function sizeof can be used to determine the size of the array.

Warning: the result of sizeof (e) may be confusing:

� if e is a value or a type, it indicates the amount of memory needed to
store that value (or type);

� if e is a variable, it indicates the amount of memory allocated to store
that variable.

The size of an array is the amount of memory allocated for all the
elements in the array!

Prof. Michele Loreti Arrays and Strings 83 / 96

Size of an array. . .

Function sizeof can be used to determine the size of the array.

Warning: the result of sizeof (e) may be confusing:

� if e is a value or a type, it indicates the amount of memory needed to
store that value (or type);

� if e is a variable, it indicates the amount of memory allocated to store
that variable.

The size of an array is the amount of memory allocated for all the
elements in the array!

Prof. Michele Loreti Arrays and Strings 83 / 96

Example. . .

i n t x = 10 ;
i n t ∗px = &x ;
i n t a r r a y [] = { 1 , 2 , 3 , 4 , 5 } ;

p r i n t f (”Val : %l u \n” , s i z e o f (10)) ;
p r i n t f (”Var : %l u \n” , s i z e o f (x)) ;
p r i n t f (” Po i n t e r : %l u \n” , s i z e o f (px)) ;
p r i n t f (” Array : %l u \n” , s i z e o f (a r r a y)) ;

Result:

Val : 4
Var : 4
Po i n t e r : 8
Ar ray : 20

Prof. Michele Loreti Arrays and Strings 84 / 96

Example. . .

i n t x = 10 ;
i n t ∗px = &x ;
i n t a r r a y [] = { 1 , 2 , 3 , 4 , 5 } ;

p r i n t f (”Val : %l u \n” , s i z e o f (10)) ;
p r i n t f (”Var : %l u \n” , s i z e o f (x)) ;
p r i n t f (” Po i n t e r : %l u \n” , s i z e o f (px)) ;
p r i n t f (” Array : %l u \n” , s i z e o f (a r r a y)) ;

Result:

Val : 4
Var : 4
Po i n t e r : 8
Ar ray : 20

Prof. Michele Loreti Arrays and Strings 84 / 96

Number of elements in an array. . .

The general pattern used to get the number of elements in an array a is:

i n t l e n g t h = s i z e o f (a) / s i z e o f (a [0]) ;

Warning: when an array is passed to a function it is automatically
converted to a pointer!

i n t coun t day s (i n t days [] , i n t l e n)
{

i n t t o t a l =0;
/∗ a s s e r t w i l l f a i l : s i z e o f (days)

e qua l s s i z e o f (i n t ∗) and l e n equa l s 12 ∗/
a s s e r t (s i z e o f (days) / s i z e o f (days [0]) == l e n) ;
wh i l e (l en−−)

t o t a l += days [l e n] ;
r e t u r n t o t a l ;

}

Prof. Michele Loreti Arrays and Strings 85 / 96

Number of elements in an array. . .

The general pattern used to get the number of elements in an array a is:

i n t l e n g t h = s i z e o f (a) / s i z e o f (a [0]) ;

Warning: when an array is passed to a function it is automatically
converted to a pointer!

i n t coun t day s (i n t days [] , i n t l e n)
{

i n t t o t a l =0;
/∗ a s s e r t w i l l f a i l : s i z e o f (days)

e qua l s s i z e o f (i n t ∗) and l e n equa l s 12 ∗/
a s s e r t (s i z e o f (days) / s i z e o f (days [0]) == l e n) ;
wh i l e (l en−−)

t o t a l += days [l e n] ;
r e t u r n t o t a l ;

}

Prof. Michele Loreti Arrays and Strings 85 / 96

Number of elements in an array. . .

The general pattern used to get the number of elements in an array a is:

i n t l e n g t h = s i z e o f (a) / s i z e o f (a [0]) ;

Warning: when an array is passed to a function it is automatically
converted to a pointer!

i n t coun t day s (i n t days [] , i n t l e n)
{

i n t t o t a l =0;
/∗ a s s e r t w i l l f a i l : s i z e o f (days)

e qua l s s i z e o f (i n t ∗) and l e n equa l s 12 ∗/
a s s e r t (s i z e o f (days) / s i z e o f (days [0]) == l e n) ;
wh i l e (l en−−)

t o t a l += days [l e n] ;
r e t u r n t o t a l ;

}

Prof. Michele Loreti Arrays and Strings 85 / 96

Character Arrays and Strings

Character arrays are special. They have certain initialisation properties not
shared with other array types because of their relationship with strings.

Character arrays can be initialised in the normal way using an initialiser list.

char l e t t e r s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ } ;

But they may also be initialised using a string constant, as follows.

char l e t t e r s [] = ”abcde ” ;

The string initialisation automatically appends a \0 character, so the above
array is of size 6, not 5. It is equivalent to writing,

char l e t t e r s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ \0 ’ } ;

Prof. Michele Loreti Arrays and Strings 86 / 96

Character Arrays and Strings

Character arrays are special. They have certain initialisation properties not
shared with other array types because of their relationship with strings.

Character arrays can be initialised in the normal way using an initialiser list.

char l e t t e r s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ } ;

But they may also be initialised using a string constant, as follows.

char l e t t e r s [] = ”abcde ” ;

The string initialisation automatically appends a \0 character, so the above
array is of size 6, not 5. It is equivalent to writing,

char l e t t e r s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ \0 ’ } ;

Prof. Michele Loreti Arrays and Strings 86 / 96

Character Arrays and Strings

Character arrays are special. They have certain initialisation properties not
shared with other array types because of their relationship with strings.

Character arrays can be initialised in the normal way using an initialiser list.

char l e t t e r s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ } ;

But they may also be initialised using a string constant, as follows.

char l e t t e r s [] = ”abcde ” ;

The string initialisation automatically appends a \0 character, so the above
array is of size 6, not 5. It is equivalent to writing,

char l e t t e r s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ \0 ’ } ;

Prof. Michele Loreti Arrays and Strings 86 / 96

Character Arrays and Strings

Character arrays are special. They have certain initialisation properties not
shared with other array types because of their relationship with strings.

Character arrays can be initialised in the normal way using an initialiser list.

char l e t t e r s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ } ;

But they may also be initialised using a string constant, as follows.

char l e t t e r s [] = ”abcde ” ;

The string initialisation automatically appends a \0 character, so the above
array is of size 6, not 5. It is equivalent to writing,

char l e t t e r s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ \0 ’ } ;

Prof. Michele Loreti Arrays and Strings 86 / 96

Character Arrays and Strings

An important property of string constants is that they are allocated
memory.

This means that they have an address and may be referred to by a char∗
pointer.

Warning: For constants of any other type, it is not possible to assign a
pointer because these constants are not stored in memory and do not have
an address.

doub l e ∗ pva l = 9 . 6 ; /∗ I n v a l i d . Won ’ t comp i l e . ∗/
i n t ∗ pa r r a y = { 1 , 2 , 3 } ; /∗ I n v a l i d . Won ’ t comp i l e . ∗/
char ∗ s t r = ” He l l o World !\ n” ; /∗ Co r r e c t . Read−on l y a r r a y . ∗/

Prof. Michele Loreti Arrays and Strings 87 / 96

Character Arrays and Strings

An important property of string constants is that they are allocated
memory.

This means that they have an address and may be referred to by a char∗
pointer.

Warning: For constants of any other type, it is not possible to assign a
pointer because these constants are not stored in memory and do not have
an address.

doub l e ∗ pva l = 9 . 6 ; /∗ I n v a l i d . Won ’ t comp i l e . ∗/
i n t ∗ pa r r a y = { 1 , 2 , 3 } ; /∗ I n v a l i d . Won ’ t comp i l e . ∗/
char ∗ s t r = ” He l l o World !\ n” ; /∗ Co r r e c t . Read−on l y a r r a y . ∗/

Prof. Michele Loreti Arrays and Strings 87 / 96

Character Arrays and Strings

An important property of string constants is that they are allocated
memory.

This means that they have an address and may be referred to by a char∗
pointer.

Warning: For constants of any other type, it is not possible to assign a
pointer because these constants are not stored in memory and do not have
an address.

doub l e ∗ pva l = 9 . 6 ; /∗ I n v a l i d . Won ’ t comp i l e . ∗/
i n t ∗ pa r r a y = { 1 , 2 , 3 } ; /∗ I n v a l i d . Won ’ t comp i l e . ∗/
char ∗ s t r = ” He l l o World !\ n” ; /∗ Co r r e c t . Read−on l y a r r a y . ∗/

Prof. Michele Loreti Arrays and Strings 87 / 96

Character Arrays and Strings

An important property of string constants is that they are allocated
memory.

This means that they have an address and may be referred to by a char∗
pointer.

Warning: For constants of any other type, it is not possible to assign a
pointer because these constants are not stored in memory and do not have
an address.

doub l e ∗ pva l = 9 . 6 ; /∗ I n v a l i d . Won ’ t comp i l e . ∗/
i n t ∗ pa r r a y = { 1 , 2 , 3 } ; /∗ I n v a l i d . Won ’ t comp i l e . ∗/
char ∗ s t r = ” He l l o World !\ n” ; /∗ Co r r e c t . Read−on l y a r r a y . ∗/

Prof. Michele Loreti Arrays and Strings 87 / 96

Strings and the Standard Library

The standard library contains many functions for manipulating strings:

size t strlen (const char ∗s). Returns the number of characters in string s,
excluding the terminating \0 character.

char ∗strcpy(char ∗s, const char ∗t). Copies the string t into character array
s, and returns a pointer to s.

int strcmp(const char ∗s, const char ∗t). Performs a lexicographical
comparison of strings s and t, and returns a negative value if s < t, a
positive value if s > t, and zero if s == t.

Prof. Michele Loreti Arrays and Strings 88 / 96

Strings and the Standard Library

char ∗ strcat (char ∗s, const char ∗t). Concatenates the string t onto the end
of string s. The first character of t overwrites the ’\0’ character at the end
of s.

char ∗ strchr (const char ∗s, int c). Returns a pointer to the first occurrence
of character c in string s. If c is not present, then NULL is returned.

char ∗ strrchr (const char ∗s, int c). Performs the same task as strchr () but
starting from the reverse end of s.

char ∗ strstr (const char ∗s, const char ∗t). Searches for the first occurrence of
sub-string t in string s. If found, it returns a pointer to the beginning of
the substring in s, otherwise it returns NULL.

Prof. Michele Loreti Arrays and Strings 89 / 96

Arrays of Pointers

Since pointers are themselves variables, they can be stored in arrays just as
other variables can:

doub l e ∗ pa r r a y [N] ;

Each pointer in an array of pointers behaves as any ordinary pointer would:

doub l e v a l = 9 . 7 ;
doub l e a r r a y [] = { 3 . 2 , 4 . 3 , 5 . 4 } ;
doub l e ∗pa [] = { &va l , a r r a y +1, NULL } ;

In the above example, element pa[i] is a pointer to a double, and ∗pa[i] is
the double variable that it points to.

Prof. Michele Loreti Arrays and Strings 90 / 96

Arrays of Pointers

Since pointers are themselves variables, they can be stored in arrays just as
other variables can:

doub l e ∗ pa r r a y [N] ;

Each pointer in an array of pointers behaves as any ordinary pointer would:

doub l e v a l = 9 . 7 ;
doub l e a r r a y [] = { 3 . 2 , 4 . 3 , 5 . 4 } ;
doub l e ∗pa [] = { &va l , a r r a y +1, NULL } ;

In the above example, element pa[i] is a pointer to a double, and ∗pa[i] is
the double variable that it points to.

Prof. Michele Loreti Arrays and Strings 90 / 96

Arrays of Pointers

Since pointers are themselves variables, they can be stored in arrays just as
other variables can:

doub l e ∗ pa r r a y [N] ;

Each pointer in an array of pointers behaves as any ordinary pointer would:

doub l e v a l = 9 . 7 ;
doub l e a r r a y [] = { 3 . 2 , 4 . 3 , 5 . 4 } ;
doub l e ∗pa [] = { &va l , a r r a y +1, NULL } ;

In the above example, element pa[i] is a pointer to a double, and ∗pa[i] is
the double variable that it points to.

Prof. Michele Loreti Arrays and Strings 90 / 96

Arrays of Pointers

Since pointers are themselves variables, they can be stored in arrays just as
other variables can:

doub l e ∗ pa r r a y [N] ;

Each pointer in an array of pointers behaves as any ordinary pointer would:

doub l e v a l = 9 . 7 ;
doub l e a r r a y [] = { 3 . 2 , 4 . 3 , 5 . 4 } ;
doub l e ∗pa [] = { &va l , a r r a y +1, NULL } ;

In the above example, element pa[i] is a pointer to a double, and ∗pa[i] is
the double variable that it points to.

Prof. Michele Loreti Arrays and Strings 90 / 96

Arrays of Pointers

If an element in an array of pointers also points to an array, the elements
of the pointed-to array may be accessed in a variety of different ways:

i n t a1 [] = { 1 , 2 , 3 , 4 } ;
i n t a2 [] = { 5 , 6 , 7 } ;
/∗ pa s t o r e s p o i n t e r s to b eg i nn i n g o f each a r r a y . ∗/
i n t ∗pa [] = { a1 , a2 } ;
/∗ Po in t e r−to−a−p o i n t e r ho l d s add r e s s o f b eg i nn i n g o f pa . ∗/
i n t ∗∗pp = pa ;
i n t ∗p= pa [1] ; /∗ Po i n t e r to the second a r r a y i n pa . ∗/
i n t v a l ;
v a l = pa [1] [1] ; /∗ e q u i v a l e n t o p e r a t i o n s : v a l = 6 ∗/
v a l = pp [1] [1] ;
v a l = ∗(pa [1] + 1) ;
v a l = ∗(pp [1] + 1) ;
v a l = ∗ (∗ (pp+1) + 1)) ;
v a l = p [1] ;

Prof. Michele Loreti Arrays and Strings 91 / 96

Multi-dimensional Arrays

A multi-dimensional array is defined using multiple adjacent square
brackets, and the elements of the array may be initialised with values
enclosed in curly braces:

f l o a t mat r i x [3] [4] = {
{ 2 . 4 , 8 . 7 , 9 . 5 , 2 . 3 } ,
{ 6 . 2 , 4 . 8 , 5 . 1 , 8 . 9 } ,
{ 7 . 2 , 1 . 6 , 4 . 4 , 3 . 6 }

} ;

As for one dimensional arrays, multi-dimensional arrays may be defined
without a specific size. However, only the left-most subscript is free:

f l o a t mat r i x [] [4] = { /∗ The 4 must be s p e c i f i e d . ∗/
{ 2 . 4 , 8 . 7 , 9 . 5 , 2 . 3 } ,
{ 6 . 2 , 4 . 8 , 5 . 1 , 8 . 9 }

} ;

Prof. Michele Loreti Arrays and Strings 92 / 96

Multi-dimensional Arrays

A multi-dimensional array is defined using multiple adjacent square
brackets, and the elements of the array may be initialised with values
enclosed in curly braces:

f l o a t mat r i x [3] [4] = {
{ 2 . 4 , 8 . 7 , 9 . 5 , 2 . 3 } ,
{ 6 . 2 , 4 . 8 , 5 . 1 , 8 . 9 } ,
{ 7 . 2 , 1 . 6 , 4 . 4 , 3 . 6 }

} ;

As for one dimensional arrays, multi-dimensional arrays may be defined
without a specific size. However, only the left-most subscript is free:

f l o a t mat r i x [] [4] = { /∗ The 4 must be s p e c i f i e d . ∗/
{ 2 . 4 , 8 . 7 , 9 . 5 , 2 . 3 } ,
{ 6 . 2 , 4 . 8 , 5 . 1 , 8 . 9 }

} ;

Prof. Michele Loreti Arrays and Strings 92 / 96

Multi-dimensional Arrays

A multi-dimensional array is defined using multiple adjacent square
brackets, and the elements of the array may be initialised with values
enclosed in curly braces:

f l o a t mat r i x [3] [4] = {
{ 2 . 4 , 8 . 7 , 9 . 5 , 2 . 3 } ,
{ 6 . 2 , 4 . 8 , 5 . 1 , 8 . 9 } ,
{ 7 . 2 , 1 . 6 , 4 . 4 , 3 . 6 }

} ;

As for one dimensional arrays, multi-dimensional arrays may be defined
without a specific size. However, only the left-most subscript is free:

f l o a t mat r i x [] [4] = { /∗ The 4 must be s p e c i f i e d . ∗/
{ 2 . 4 , 8 . 7 , 9 . 5 , 2 . 3 } ,
{ 6 . 2 , 4 . 8 , 5 . 1 , 8 . 9 }

} ;

Prof. Michele Loreti Arrays and Strings 92 / 96

Multi-dimensional Arrays

A multi-dimensional array is defined using multiple adjacent square
brackets, and the elements of the array may be initialised with values
enclosed in curly braces:

f l o a t mat r i x [3] [4] = {
{ 2 . 4 , 8 . 7 , 9 . 5 , 2 . 3 } ,
{ 6 . 2 , 4 . 8 , 5 . 1 , 8 . 9 } ,
{ 7 . 2 , 1 . 6 , 4 . 4 , 3 . 6 }

} ;

As for one dimensional arrays, multi-dimensional arrays may be defined
without a specific size. However, only the left-most subscript is free:

f l o a t mat r i x [] [4] = { /∗ The 4 must be s p e c i f i e d . ∗/
{ 2 . 4 , 8 . 7 , 9 . 5 , 2 . 3 } ,
{ 6 . 2 , 4 . 8 , 5 . 1 , 8 . 9 }

} ;

Prof. Michele Loreti Arrays and Strings 92 / 96

To be continued. . .

Prof. Michele Loreti Arrays and Strings 93 / 96

