
Dynamic Memory

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Dynamic Memory 94 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Constant data area:

� stores strings and constants and data whose values are known at
compile time;

� is read only, the result of trying to modify it are undefined.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Constant data area:
� stores strings and constants and data whose values are known at

compile time;

� is read only, the result of trying to modify it are undefined.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Constant data area:
� stores strings and constants and data whose values are known at

compile time;

� is read only, the result of trying to modify it are undefined.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Static-extent data area:

� is used to store variables that are defined extern or static;

� exists for the lifetime of the program;

� can be modified.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Static-extent data area:
� is used to store variables that are defined extern or static;

� exists for the lifetime of the program;

� can be modified.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Static-extent data area:
� is used to store variables that are defined extern or static;

� exists for the lifetime of the program;

� can be modified.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Static-extent data area:
� is used to store variables that are defined extern or static;

� exists for the lifetime of the program;

� can be modified.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Constant and static-extent data area are managed by the compiler,
are allocated when program begins and destroyed when it

terminates.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;
� the static-extent data area;
� the stack;
� the heap.

Stack memory:

� is used to store local variables (the ones with automatic extent);

� is allocated at the point a variable is defined and released when it
goes out-of-scope;

� follows a LIFO policy:

� when variables are defined they are pushed onto the stack;
� at the end of a block, all the variables that go out-of-scope are popped

off the stack.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;
� the static-extent data area;
� the stack;
� the heap.

Stack memory:

� is used to store local variables (the ones with automatic extent);

� is allocated at the point a variable is defined and released when it
goes out-of-scope;

� follows a LIFO policy:

� when variables are defined they are pushed onto the stack;
� at the end of a block, all the variables that go out-of-scope are popped

off the stack.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;
� the static-extent data area;
� the stack;
� the heap.

Stack memory:

� is used to store local variables (the ones with automatic extent);

� is allocated at the point a variable is defined and released when it
goes out-of-scope;

� follows a LIFO policy:

� when variables are defined they are pushed onto the stack;
� at the end of a block, all the variables that go out-of-scope are popped

off the stack.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;
� the static-extent data area;
� the stack;
� the heap.

Stack memory:

� is used to store local variables (the ones with automatic extent);

� is allocated at the point a variable is defined and released when it
goes out-of-scope;

� follows a LIFO policy:

� when variables are defined they are pushed onto the stack;
� at the end of a block, all the variables that go out-of-scope are popped

off the stack.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;
� the static-extent data area;
� the stack;
� the heap.

Stack memory:

� is used to store local variables (the ones with automatic extent);

� is allocated at the point a variable is defined and released when it
goes out-of-scope;

� follows a LIFO policy:
� when variables are defined they are pushed onto the stack;

� at the end of a block, all the variables that go out-of-scope are popped
off the stack.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;
� the static-extent data area;
� the stack;
� the heap.

Stack memory:

� is used to store local variables (the ones with automatic extent);

� is allocated at the point a variable is defined and released when it
goes out-of-scope;

� follows a LIFO policy:
� when variables are defined they are pushed onto the stack;
� at the end of a block, all the variables that go out-of-scope are popped

off the stack.

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Heap memory:

� is used for dynamically allocated storage;

� is managed directly by the programmer;

� there is not any support provided by compiler to manage di area!

WARNING!

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Heap memory:
� is used for dynamically allocated storage;

� is managed directly by the programmer;

� there is not any support provided by compiler to manage di area!

WARNING!

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Heap memory:
� is used for dynamically allocated storage;

� is managed directly by the programmer;

� there is not any support provided by compiler to manage di area!

WARNING!

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Heap memory:
� is used for dynamically allocated storage;

� is managed directly by the programmer;

� there is not any support provided by compiler to manage di area!

WARNING!

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory areas in C

C has four distinct areas of memory:

� the constant data area;

� the static-extent data area;

� the stack;

� the heap.

Heap memory:
� is used for dynamically allocated storage;

� is managed directly by the programmer;

� there is not any support provided by compiler to manage di area!

WARNING!

Prof. Michele Loreti Dynamic Memory 95 / 120

Memory Allocation Functions (1/4)

There are two main function for memory allocations:

v o i d ∗m a l l o c (s i z e t)
v o i d f r e e (v o i d ∗)

Function malloc allocate the number of bytes passed as parameters and
returns a pointer to the allocated memory area.
The returned datatype is void∗ which represents a generic pointer.

Function free allows to release memory that has been allocated with malloc.

Prof. Michele Loreti Dynamic Memory 96 / 120

Memory Allocation Functions (1/4)

There are two main function for memory allocations:

v o i d ∗m a l l o c (s i z e t)
v o i d f r e e (v o i d ∗)

Function malloc allocate the number of bytes passed as parameters and
returns a pointer to the allocated memory area.

The returned datatype is void∗ which represents a generic pointer.

Function free allows to release memory that has been allocated with malloc.

Prof. Michele Loreti Dynamic Memory 96 / 120

Memory Allocation Functions (1/4)

There are two main function for memory allocations:

v o i d ∗m a l l o c (s i z e t)
v o i d f r e e (v o i d ∗)

Function malloc allocate the number of bytes passed as parameters and
returns a pointer to the allocated memory area.
The returned datatype is void∗ which represents a generic pointer.

Function free allows to release memory that has been allocated with malloc.

Prof. Michele Loreti Dynamic Memory 96 / 120

Memory Allocation Functions (1/4)

There are two main function for memory allocations:

v o i d ∗m a l l o c (s i z e t)
v o i d f r e e (v o i d ∗)

Function malloc allocate the number of bytes passed as parameters and
returns a pointer to the allocated memory area.
The returned datatype is void∗ which represents a generic pointer.

Function free allows to release memory that has been allocated with malloc.

Prof. Michele Loreti Dynamic Memory 96 / 120

Memory Allocation Functions (2/4)

To dynamically create an array of 10 integers, one can write:

i n t ∗p = m a l l o c (10 ∗ s i z e o f (i n t)) ;

Explicit cast is not needed, however it is common to add it:

i n t ∗p = (i n t ∗) m a l l o c (10 ∗ s i z e o f (i n t)) ;

Memory allocation may fail! In this case value NULL is returned.

To release the memory allocated above, function free is used:

f r e e (p) ;

Prof. Michele Loreti Dynamic Memory 97 / 120

Memory Allocation Functions (2/4)

To dynamically create an array of 10 integers, one can write:

i n t ∗p = m a l l o c (10 ∗ s i z e o f (i n t)) ;

Explicit cast is not needed, however it is common to add it:

i n t ∗p = (i n t ∗) m a l l o c (10 ∗ s i z e o f (i n t)) ;

Memory allocation may fail! In this case value NULL is returned.

To release the memory allocated above, function free is used:

f r e e (p) ;

Prof. Michele Loreti Dynamic Memory 97 / 120

Memory Allocation Functions (2/4)

To dynamically create an array of 10 integers, one can write:

i n t ∗p = m a l l o c (10 ∗ s i z e o f (i n t)) ;

Explicit cast is not needed, however it is common to add it:

i n t ∗p = (i n t ∗) m a l l o c (10 ∗ s i z e o f (i n t)) ;

Memory allocation may fail! In this case value NULL is returned.

To release the memory allocated above, function free is used:

f r e e (p) ;

Prof. Michele Loreti Dynamic Memory 97 / 120

Memory Allocation Functions (2/4)

To dynamically create an array of 10 integers, one can write:

i n t ∗p = m a l l o c (10 ∗ s i z e o f (i n t)) ;

Explicit cast is not needed, however it is common to add it:

i n t ∗p = (i n t ∗) m a l l o c (10 ∗ s i z e o f (i n t)) ;

Memory allocation may fail! In this case value NULL is returned.

To release the memory allocated above, function free is used:

f r e e (p) ;

Prof. Michele Loreti Dynamic Memory 97 / 120

Memory Allocation Functions (3/4)

Another function that can be used to allocate memory in the heap is:

v o i d ∗ c a l l o c (s i z e t n , s i z e t s i z e)

While malloc allocates an area of memory and fills it with unspecified
values, calloc guarantees that all the items in the allocated area are set to
0:

� n is the number of copies to allocate;

� size is the size of each copy.

i n t ∗p = c a l l o c (1 0 , s i z e o f (i n t)) ;

Prof. Michele Loreti Dynamic Memory 98 / 120

Memory Allocation Functions (3/4)

Another function that can be used to allocate memory in the heap is:

v o i d ∗ c a l l o c (s i z e t n , s i z e t s i z e)

While malloc allocates an area of memory and fills it with unspecified
values, calloc guarantees that all the items in the allocated area are set to
0

:

� n is the number of copies to allocate;

� size is the size of each copy.

i n t ∗p = c a l l o c (1 0 , s i z e o f (i n t)) ;

Prof. Michele Loreti Dynamic Memory 98 / 120

Memory Allocation Functions (3/4)

Another function that can be used to allocate memory in the heap is:

v o i d ∗ c a l l o c (s i z e t n , s i z e t s i z e)

While malloc allocates an area of memory and fills it with unspecified
values, calloc guarantees that all the items in the allocated area are set to
0:

� n is the number of copies to allocate;

� size is the size of each copy.

i n t ∗p = c a l l o c (1 0 , s i z e o f (i n t)) ;

Prof. Michele Loreti Dynamic Memory 98 / 120

Memory Allocation Functions (3/4)

Another function that can be used to allocate memory in the heap is:

v o i d ∗ c a l l o c (s i z e t n , s i z e t s i z e)

While malloc allocates an area of memory and fills it with unspecified
values, calloc guarantees that all the items in the allocated area are set to
0:

� n is the number of copies to allocate;

� size is the size of each copy.

i n t ∗p = c a l l o c (1 0 , s i z e o f (i n t)) ;

Prof. Michele Loreti Dynamic Memory 98 / 120

Memory Allocation Functions (4/4)

Function realloc is used change the size of an existing block of dynamically
allocated memory:

v o i d ∗ r e a l l o c (v o i d ∗p , s i z e t s i z e)

where p is a pointer to the current block of memory (allocated with a
malloc, calloc) and size is the new requested size.

The return value is a pointer to the resized memory block, or NULL if the
request fails.

If realloc () is passed a size request of 0, then the memory pointed to by p

is released, and realloc () returns NULL.

Prof. Michele Loreti Dynamic Memory 99 / 120

Memory Allocation Functions (4/4)

Function realloc is used change the size of an existing block of dynamically
allocated memory:

v o i d ∗ r e a l l o c (v o i d ∗p , s i z e t s i z e)

where p is a pointer to the current block of memory (allocated with a
malloc, calloc) and size is the new requested size.

The return value is a pointer to the resized memory block, or NULL if the
request fails.

If realloc () is passed a size request of 0, then the memory pointed to by p

is released, and realloc () returns NULL.

Prof. Michele Loreti Dynamic Memory 99 / 120

Memory Allocation Functions (4/4)

Function realloc is used change the size of an existing block of dynamically
allocated memory:

v o i d ∗ r e a l l o c (v o i d ∗p , s i z e t s i z e)

where p is a pointer to the current block of memory (allocated with a
malloc, calloc) and size is the new requested size.

The return value is a pointer to the resized memory block, or NULL if the
request fails.

If realloc () is passed a size request of 0, then the memory pointed to by p

is released, and realloc () returns NULL.

Prof. Michele Loreti Dynamic Memory 99 / 120

Memory Allocation Functions (4/4)

Function realloc is used change the size of an existing block of dynamically
allocated memory:

v o i d ∗ r e a l l o c (v o i d ∗p , s i z e t s i z e)

where p is a pointer to the current block of memory (allocated with a
malloc, calloc) and size is the new requested size.

The return value is a pointer to the resized memory block, or NULL if the
request fails.

If realloc () is passed a size request of 0, then the memory pointed to by p

is released, and realloc () returns NULL.

Prof. Michele Loreti Dynamic Memory 99 / 120

Memory Allocation Functions: Example

Write function string duplicate that received in input a string performs a
copy of the string in a new.

Solution:

c h a r ∗ s t r i n g d u p l i c a t e (c h a r ∗ s)
{

c h a r ∗p = m a l l o c (s t r l e n (s) + 1) ;
r e t u r n s t r c p y (p , s) ;

}

This solution is not correct!The result of malloc may be null!

Prof. Michele Loreti Dynamic Memory 100 / 120

Memory Allocation Functions: Example

Write function string duplicate that received in input a string performs a
copy of the string in a new.

Solution:

c h a r ∗ s t r i n g d u p l i c a t e (c h a r ∗ s)
{

c h a r ∗p = m a l l o c (s t r l e n (s) + 1) ;
r e t u r n s t r c p y (p , s) ;

}

This solution is not correct!The result of malloc may be null!

Prof. Michele Loreti Dynamic Memory 100 / 120

Memory Allocation Functions: Example

Write function string duplicate that received in input a string performs a
copy of the string in a new.

Solution:

c h a r ∗ s t r i n g d u p l i c a t e (c h a r ∗ s)
{

c h a r ∗p = m a l l o c (s t r l e n (s) + 1) ;
r e t u r n s t r c p y (p , s) ;

}

This solution is not correct!

The result of malloc may be null!

Prof. Michele Loreti Dynamic Memory 100 / 120

Memory Allocation Functions: Example

Write function string duplicate that received in input a string performs a
copy of the string in a new.

Solution:

c h a r ∗ s t r i n g d u p l i c a t e (c h a r ∗ s)
{

c h a r ∗p = m a l l o c (s t r l e n (s) + 1) ;
r e t u r n s t r c p y (p , s) ;

}

This solution is not correct!The result of malloc may be null!

Prof. Michele Loreti Dynamic Memory 100 / 120

Memory Allocation Functions: Example

Solution 2:

c h a r ∗ s t r i n g d u p l i c a t e (c h a r ∗ s)
{

c h a r ∗p = m a l l o c (s t r l e n (s) + 1) ;
i f (p != NULL) {

s t r c p y (p , s) ;
}
r e t u r n p ;

}

Warning: To avoid memory-leak, the calling function has the
responsibility to free the allocated memory!

c h a r ∗ s ;
s = s t r i n g d u p l i c a t e (” t h i s i s a s t r i n g ”) ;
. . .
f r e e (s) ;

Prof. Michele Loreti Dynamic Memory 101 / 120

Memory Allocation Functions: Example

Solution 2:

c h a r ∗ s t r i n g d u p l i c a t e (c h a r ∗ s)
{

c h a r ∗p = m a l l o c (s t r l e n (s) + 1) ;
i f (p != NULL) {

s t r c p y (p , s) ;
}
r e t u r n p ;

}

Warning: To avoid memory-leak, the calling function has the
responsibility to free the allocated memory!

c h a r ∗ s ;
s = s t r i n g d u p l i c a t e (” t h i s i s a s t r i n g ”) ;
. . .
f r e e (s) ;

Prof. Michele Loreti Dynamic Memory 101 / 120

Memory Allocation Functions: Example

Solution 2:

c h a r ∗ s t r i n g d u p l i c a t e (c h a r ∗ s)
{

c h a r ∗p = m a l l o c (s t r l e n (s) + 1) ;
i f (p != NULL) {

s t r c p y (p , s) ;
}
r e t u r n p ;

}

Warning: To avoid memory-leak, the calling function has the
responsibility to free the allocated memory!

c h a r ∗ s ;
s = s t r i n g d u p l i c a t e (” t h i s i s a s t r i n g ”) ;
. . .
f r e e (s) ;

Prof. Michele Loreti Dynamic Memory 101 / 120

List of common errors (1/2)

Dereferencing a pointer with an invalid address (Memory Corruption):

i n t ∗p ;
i n t z = ∗p ;

Dereferencing a pointer that has been freed:

i n t ∗p ;
. . .
f r e e (p) ;
z = ∗p ;

Dereferencing a NULL pointer:

i n t ∗p = NULL ;
z = ∗p ;

Prof. Michele Loreti Dynamic Memory 102 / 120

List of common errors (1/2)

Dereferencing a pointer with an invalid address (Memory Corruption):

i n t ∗p ;
i n t z = ∗p ;

Dereferencing a pointer that has been freed:

i n t ∗p ;
. . .
f r e e (p) ;
z = ∗p ;

Dereferencing a NULL pointer:

i n t ∗p = NULL ;
z = ∗p ;

Prof. Michele Loreti Dynamic Memory 102 / 120

List of common errors (1/2)

Dereferencing a pointer with an invalid address (Memory Corruption):

i n t ∗p ;
i n t z = ∗p ;

Dereferencing a pointer that has been freed:

i n t ∗p ;
. . .
f r e e (p) ;
z = ∗p ;

Dereferencing a NULL pointer:

i n t ∗p = NULL ;
z = ∗p ;

Prof. Michele Loreti Dynamic Memory 102 / 120

List of common errors (1/2)

Dereferencing a pointer with an invalid address (Memory Corruption):

i n t ∗p ;
i n t z = ∗p ;

Dereferencing a pointer that has been freed:

i n t ∗p ;
. . .
f r e e (p) ;
z = ∗p ;

Dereferencing a NULL pointer:

i n t ∗p = NULL ;
z = ∗p ;

Prof. Michele Loreti Dynamic Memory 102 / 120

List of common errors (2/2)

Freeing memory that has already been freed:

. . .
f r e e (p) ;
. . . //No new a l l o c a t i o n o f p !
f r e e (p) ;

Freeing a pointer to memory that was not dynamically allocated:

i n t z = 1 0 ;
i n t ∗p = &z ;
. . .
f r e e (p) ;

Failing to free dynamically allocated memory.

Attempting to access memory beyond the bounds of the allocated block.

Prof. Michele Loreti Dynamic Memory 103 / 120

List of common errors (2/2)

Freeing memory that has already been freed:

. . .
f r e e (p) ;
. . . //No new a l l o c a t i o n o f p !
f r e e (p) ;

Freeing a pointer to memory that was not dynamically allocated:

i n t z = 1 0 ;
i n t ∗p = &z ;
. . .
f r e e (p) ;

Failing to free dynamically allocated memory.

Attempting to access memory beyond the bounds of the allocated block.

Prof. Michele Loreti Dynamic Memory 103 / 120

List of common errors (2/2)

Freeing memory that has already been freed:

. . .
f r e e (p) ;
. . . //No new a l l o c a t i o n o f p !
f r e e (p) ;

Freeing a pointer to memory that was not dynamically allocated:

i n t z = 1 0 ;
i n t ∗p = &z ;
. . .
f r e e (p) ;

Failing to free dynamically allocated memory.

Attempting to access memory beyond the bounds of the allocated block.

Prof. Michele Loreti Dynamic Memory 103 / 120

List of common errors (2/2)

Freeing memory that has already been freed:

. . .
f r e e (p) ;
. . . //No new a l l o c a t i o n o f p !
f r e e (p) ;

Freeing a pointer to memory that was not dynamically allocated:

i n t z = 1 0 ;
i n t ∗p = &z ;
. . .
f r e e (p) ;

Failing to free dynamically allocated memory.

Attempting to access memory beyond the bounds of the allocated block.

Prof. Michele Loreti Dynamic Memory 103 / 120

Good practices

Every malloc() should have an associated free ().

Pointers should be initialised when defined (either with a valid address or
NULL).

Pointers should be assigned NULL after being freed.

If the above rule are used, many of the common errors are avoided
with a NULL-check!

Prof. Michele Loreti Dynamic Memory 104 / 120

Good practices

Every malloc() should have an associated free ().

Pointers should be initialised when defined (either with a valid address or
NULL).

Pointers should be assigned NULL after being freed.

If the above rule are used, many of the common errors are avoided
with a NULL-check!

Prof. Michele Loreti Dynamic Memory 104 / 120

Good practices

Every malloc() should have an associated free ().

Pointers should be initialised when defined (either with a valid address or
NULL).

Pointers should be assigned NULL after being freed.

If the above rule are used, many of the common errors are avoided
with a NULL-check!

Prof. Michele Loreti Dynamic Memory 104 / 120

Good practices

Every malloc() should have an associated free ().

Pointers should be initialised when defined (either with a valid address or
NULL).

Pointers should be assigned NULL after being freed.

If the above rule are used, many of the common errors are avoided
with a NULL-check!

Prof. Michele Loreti Dynamic Memory 104 / 120

Good practices

Every malloc() should have an associated free ().

Pointers should be initialised when defined (either with a valid address or
NULL).

Pointers should be assigned NULL after being freed.

If the above rule are used, many of the common errors are avoided
with a NULL-check!

Prof. Michele Loreti Dynamic Memory 104 / 120

To be continued. . .

Prof. Michele Loreti Dynamic Memory 105 / 120

Structures and Unions

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Structures and Unions 106 / 120

Structures

A structure is declared using the keyword struct , and the internal
organisation of the structure is defined by a set of variables enclosed in
braces:

s t r u c t P o i n t {
i n t x ;
i n t y ;

} ;

By convention, structures should always be named with an uppercase first
letter.

The variables x and y are called members of the structure named Point.

Prof. Michele Loreti Structures and Unions 107 / 120

Structures

A structure is declared using the keyword struct , and the internal
organisation of the structure is defined by a set of variables enclosed in
braces:

s t r u c t P o i n t {
i n t x ;
i n t y ;

} ;

By convention, structures should always be named with an uppercase first
letter.

The variables x and y are called members of the structure named Point.

Prof. Michele Loreti Structures and Unions 107 / 120

Structures

A structure is declared using the keyword struct , and the internal
organisation of the structure is defined by a set of variables enclosed in
braces:

s t r u c t P o i n t {
i n t x ;
i n t y ;

} ;

By convention, structures should always be named with an uppercase first
letter.

The variables x and y are called members of the structure named Point.

Prof. Michele Loreti Structures and Unions 107 / 120

Structures

Variables of type Point may be defined as a list of identifiers at the end of
the struct definition:

s t r u c t P o i n t {
i n t x ;
i n t y ;

} p1 , p2 , p3 ;

or as subsequent definitions using the tag struct Point:

s t r u c t P o i n t p1 , p2 , p3 ;

When a structure is defined, its members may be initialised using brace
notation:

s t r u c t P o i n t t o p l e f t = { 320 , 0 } ;

Prof. Michele Loreti Structures and Unions 108 / 120

Structures

Variables of type Point may be defined as a list of identifiers at the end of
the struct definition:

s t r u c t P o i n t {
i n t x ;
i n t y ;

} p1 , p2 , p3 ;

or as subsequent definitions using the tag struct Point:

s t r u c t P o i n t p1 , p2 , p3 ;

When a structure is defined, its members may be initialised using brace
notation:

s t r u c t P o i n t t o p l e f t = { 320 , 0 } ;

Prof. Michele Loreti Structures and Unions 108 / 120

Structures

Variables of type Point may be defined as a list of identifiers at the end of
the struct definition:

s t r u c t P o i n t {
i n t x ;
i n t y ;

} p1 , p2 , p3 ;

or as subsequent definitions using the tag struct Point:

s t r u c t P o i n t p1 , p2 , p3 ;

When a structure is defined, its members may be initialised using brace
notation:

s t r u c t P o i n t t o p l e f t = { 320 , 0 } ;

Prof. Michele Loreti Structures and Unions 108 / 120

Structures

Individual members of a struct may be accessed via the member operator .:

s t r u c t P o i n t t o p l e f t ;
t o p l e f t . x = 3 2 0 ;
t o p l e f t . y = 0 ;

Structures can be nested:

s t r u c t R e c t a n g l e {
s t r u c t P o i n t t o p l e f t ;
s t r u c t P o i n t b o t t o m r i g h t ;

} ;

To access the lowest-level members of a variable of type Rectangle,
therefore, requires two instances of the member operator

s t r u c t R e c t a n g l e r e c t ;
r e c t . t o p l e f t . x = 5 0 ;

Prof. Michele Loreti Structures and Unions 109 / 120

Structures

Individual members of a struct may be accessed via the member operator .:

s t r u c t P o i n t t o p l e f t ;
t o p l e f t . x = 3 2 0 ;
t o p l e f t . y = 0 ;

Structures can be nested:

s t r u c t R e c t a n g l e {
s t r u c t P o i n t t o p l e f t ;
s t r u c t P o i n t b o t t o m r i g h t ;

} ;

To access the lowest-level members of a variable of type Rectangle,
therefore, requires two instances of the member operator

s t r u c t R e c t a n g l e r e c t ;
r e c t . t o p l e f t . x = 5 0 ;

Prof. Michele Loreti Structures and Unions 109 / 120

Structures

Individual members of a struct may be accessed via the member operator .:

s t r u c t P o i n t t o p l e f t ;
t o p l e f t . x = 3 2 0 ;
t o p l e f t . y = 0 ;

Structures can be nested:

s t r u c t R e c t a n g l e {
s t r u c t P o i n t t o p l e f t ;
s t r u c t P o i n t b o t t o m r i g h t ;

} ;

To access the lowest-level members of a variable of type Rectangle,
therefore, requires two instances of the member operator

s t r u c t R e c t a n g l e r e c t ;
r e c t . t o p l e f t . x = 5 0 ;

Prof. Michele Loreti Structures and Unions 109 / 120

Operations on Structures

The operations permitted on structures are a subset of the operations
permitted on basic types.

Structures may be copied or assigned, but it is not possible to directly
compare two structures.

p2 = p1 ; /∗ V a l i d . s t r u c t s may be a s s i g n e d . ∗/
i f (p1 == p2) /∗ I n v a l i d . s t r u c t s may not be compared . ∗/

p r i n t f (” P o i n t s a r e e q u a l \n”) ;
i f (p1 . x == p2 . x && p1 . y == p2 . y)

/∗ V a l i d . May compare b a s i c t y p e s . ∗/
p r i n t f (” P o i n t s a r e e q u a l \n”) ;

Prof. Michele Loreti Structures and Unions 110 / 120

Operations on Structures

The operations permitted on structures are a subset of the operations
permitted on basic types.

Structures may be copied or assigned, but it is not possible to directly
compare two structures.

p2 = p1 ; /∗ V a l i d . s t r u c t s may be a s s i g n e d . ∗/
i f (p1 == p2) /∗ I n v a l i d . s t r u c t s may not be compared . ∗/

p r i n t f (” P o i n t s a r e e q u a l \n”) ;
i f (p1 . x == p2 . x && p1 . y == p2 . y)

/∗ V a l i d . May compare b a s i c t y p e s . ∗/
p r i n t f (” P o i n t s a r e e q u a l \n”) ;

Prof. Michele Loreti Structures and Unions 110 / 120

Operations on Structures

The operations permitted on structures are a subset of the operations
permitted on basic types.

Structures may be copied or assigned, but it is not possible to directly
compare two structures.

p2 = p1 ; /∗ V a l i d . s t r u c t s may be a s s i g n e d . ∗/
i f (p1 == p2) /∗ I n v a l i d . s t r u c t s may not be compared . ∗/

p r i n t f (” P o i n t s a r e e q u a l \n”) ;
i f (p1 . x == p2 . x && p1 . y == p2 . y)

/∗ V a l i d . May compare b a s i c t y p e s . ∗/
p r i n t f (” P o i n t s a r e e q u a l \n”) ;

Prof. Michele Loreti Structures and Unions 110 / 120

Operations on Structures

A structure may be passed to a function and may be returned by a
function:

s t r u c t P o i n t p o i n t d i f f e r e n c e (s t r u c t P o i n t p1 , s t r u c t P o i n t
p2)

/∗ Return t h e d e l t a (dx , dy) o f p2 w i t h r e s p e c t to p1 . ∗/
{

p2 . x −= p1 . x ;
p2 . y −= p1 . y ;
r e t u r n p2 ;

}

As with any other variable, structures are passed by value!

s t r u c t P o i n t a = {5 ,10} , b = {20 ,30} , c ;
c = p o i n t d i f f e r e n c e (a , b) ;
/∗ c = {15 ,20} , b i s unchanged . ∗/

Prof. Michele Loreti Structures and Unions 111 / 120

Operations on Structures

A structure may be passed to a function and may be returned by a
function:

s t r u c t P o i n t p o i n t d i f f e r e n c e (s t r u c t P o i n t p1 , s t r u c t P o i n t
p2)

/∗ Return t h e d e l t a (dx , dy) o f p2 w i t h r e s p e c t to p1 . ∗/
{

p2 . x −= p1 . x ;
p2 . y −= p1 . y ;
r e t u r n p2 ;

}

As with any other variable, structures are passed by value!

s t r u c t P o i n t a = {5 ,10} , b = {20 ,30} , c ;
c = p o i n t d i f f e r e n c e (a , b) ;
/∗ c = {15 ,20} , b i s unchanged . ∗/

Prof. Michele Loreti Structures and Unions 111 / 120

Structures and Poiters

Passing structures by value can be inefficient if the structure is large, and
it is generally more efficient to pass a pointer to a struct rather than
making a copy.

s t r u c t P o i n t pt = { 50 , 50 } ;
s t r u c t P o i n t ∗pp ;
pp = &pt ;
(∗ pp) . x = 1 0 0 ; /∗ pt . x i s now 1 0 0 . ∗/

The parentheses about (∗pp).x are necessary to enforce the correct
order-of-evaluation!

The −> operator permits the expression (∗pp).x to be rewritten more
simply as pp−>x.

Prof. Michele Loreti Structures and Unions 112 / 120

Structures and Poiters

Passing structures by value can be inefficient if the structure is large, and
it is generally more efficient to pass a pointer to a struct rather than
making a copy.

s t r u c t P o i n t pt = { 50 , 50 } ;
s t r u c t P o i n t ∗pp ;
pp = &pt ;
(∗ pp) . x = 1 0 0 ; /∗ pt . x i s now 1 0 0 . ∗/

The parentheses about (∗pp).x are necessary to enforce the correct
order-of-evaluation!

The −> operator permits the expression (∗pp).x to be rewritten more
simply as pp−>x.

Prof. Michele Loreti Structures and Unions 112 / 120

Structures and Poiters

Passing structures by value can be inefficient if the structure is large, and
it is generally more efficient to pass a pointer to a struct rather than
making a copy.

s t r u c t P o i n t pt = { 50 , 50 } ;
s t r u c t P o i n t ∗pp ;
pp = &pt ;
(∗ pp) . x = 1 0 0 ; /∗ pt . x i s now 1 0 0 . ∗/

The parentheses about (∗pp).x are necessary to enforce the correct
order-of-evaluation!

The −> operator permits the expression (∗pp).x to be rewritten more
simply as pp−>x.

Prof. Michele Loreti Structures and Unions 112 / 120

Self-referential Structures

A structure definition may not contain an object of its own type.

s t r u c t L i s t {
i n t i tem ;
s t r u c t L i s t n e x t ; /∗ I n v a l i d . Cannot d e f i n e an o b j e c t o f an

i n c o m p l e t e t y p e . ∗/
}

However, it may refer to a pointer of its own type:

s t r u c t L i s t {
i n t i tem ;
s t r u c t ∗ L i s t n e x t ;

}

Prof. Michele Loreti Structures and Unions 113 / 120

Self-referential Structures

A structure definition may not contain an object of its own type.

s t r u c t L i s t {
i n t i tem ;
s t r u c t L i s t n e x t ; /∗ I n v a l i d . Cannot d e f i n e an o b j e c t o f an

i n c o m p l e t e t y p e . ∗/
}

However, it may refer to a pointer of its own type:

s t r u c t L i s t {
i n t i tem ;
s t r u c t ∗ L i s t n e x t ;

}

Prof. Michele Loreti Structures and Unions 113 / 120

Self-referential Structures

A structure definition may not contain an object of its own type.

s t r u c t L i s t {
i n t i tem ;
s t r u c t L i s t n e x t ; /∗ I n v a l i d . Cannot d e f i n e an o b j e c t o f an

i n c o m p l e t e t y p e . ∗/
}

However, it may refer to a pointer of its own type:

s t r u c t L i s t {
i n t i tem ;
s t r u c t ∗ L i s t n e x t ;

}

Prof. Michele Loreti Structures and Unions 113 / 120

Self-referential Structures

A structure definition may not contain an object of its own type.

s t r u c t L i s t {
i n t i tem ;
s t r u c t L i s t n e x t ; /∗ I n v a l i d . Cannot d e f i n e an o b j e c t o f an

i n c o m p l e t e t y p e . ∗/
}

However, it may refer to a pointer of its own type:

s t r u c t L i s t {
i n t i tem ;
s t r u c t ∗ L i s t n e x t ;

}

Prof. Michele Loreti Structures and Unions 113 / 120

Exercise: List Operations

Write C library that implements basic list operations:

� list .h with type and functions declarations;

� list .c with all the definitions.

Prof. Michele Loreti Structures and Unions 114 / 120

Typedefs

The keyword typedef provides a means for creating new data type names:

t y p e d e f i n t Length ;

This makes the name Length a synonym for int .

The ability to define type synonyms permits a significant improvement in
structure declaration syntax:

t y p e d e f s t r u c t P o i n t {
i n t x ;
i n t y ;

} P o i n t ;

P o i n t pt1 , pt2 ;

Prof. Michele Loreti Structures and Unions 115 / 120

Typedefs

The keyword typedef provides a means for creating new data type names:

t y p e d e f i n t Length ;

This makes the name Length a synonym for int .

The ability to define type synonyms permits a significant improvement in
structure declaration syntax:

t y p e d e f s t r u c t P o i n t {
i n t x ;
i n t y ;

} P o i n t ;

P o i n t pt1 , pt2 ;

Prof. Michele Loreti Structures and Unions 115 / 120

Typedefs

The keyword typedef provides a means for creating new data type names:

t y p e d e f i n t Length ;

This makes the name Length a synonym for int .

The ability to define type synonyms permits a significant improvement in
structure declaration syntax:

t y p e d e f s t r u c t P o i n t {
i n t x ;
i n t y ;

} P o i n t ;

P o i n t pt1 , pt2 ;

Prof. Michele Loreti Structures and Unions 115 / 120

Typedefs and Self-referential Structures

This simplification enabled by typedef is more marked for self-referencing
structures:

t y p e d e f s t r u c t l i s t t L i s t ;
s t r u c t l i s t t {

i n t i tem ;
L i s t ∗ n e x t ;

} ;

Prof. Michele Loreti Structures and Unions 116 / 120

Union Types

The declaration of a union type is similar to the declaration of a struct type:

un ion Utype {
i n t i v a l ;
f l o a t f v a l ;
c h a r ∗ s v a l ;

} ;

un ion Utype x , y , z ;

Accessing members of a union type is also the same as for structures, with
the . member operator for union objects and the −> operator for pointers
to union objects.

Prof. Michele Loreti Structures and Unions 117 / 120

Union Types

The declaration of a union type is similar to the declaration of a struct type:

un ion Utype {
i n t i v a l ;
f l o a t f v a l ;
c h a r ∗ s v a l ;

} ;

un ion Utype x , y , z ;

Accessing members of a union type is also the same as for structures, with
the . member operator for union objects and the −> operator for pointers
to union objects.

Prof. Michele Loreti Structures and Unions 117 / 120

Structures vs Unions

Differences:

� a struct defines a group of related variables and provides storage for
all of its members;

� a union provides storage for a single variable, which may be one of
several types.

In the Utype example, the compiler will allocate sufficient memory to store
the largest of the types int , float , and char ∗.

A Utype variable holds a value for one of the three possible types!

It is the programmers responsibility to keep track of which type that might
be!

Prof. Michele Loreti Structures and Unions 118 / 120

Structures vs Unions

Differences:

� a struct defines a group of related variables and provides storage for
all of its members;

� a union provides storage for a single variable, which may be one of
several types.

In the Utype example, the compiler will allocate sufficient memory to store
the largest of the types int , float , and char ∗.

A Utype variable holds a value for one of the three possible types!

It is the programmers responsibility to keep track of which type that might
be!

Prof. Michele Loreti Structures and Unions 118 / 120

Structures vs Unions

Differences:

� a struct defines a group of related variables and provides storage for
all of its members;

� a union provides storage for a single variable, which may be one of
several types.

In the Utype example, the compiler will allocate sufficient memory to store
the largest of the types int , float , and char ∗.

A Utype variable holds a value for one of the three possible types!

It is the programmers responsibility to keep track of which type that might
be!

Prof. Michele Loreti Structures and Unions 118 / 120

Structures vs Unions

Differences:

� a struct defines a group of related variables and provides storage for
all of its members;

� a union provides storage for a single variable, which may be one of
several types.

In the Utype example, the compiler will allocate sufficient memory to store
the largest of the types int , float , and char ∗.

A Utype variable holds a value for one of the three possible types!

It is the programmers responsibility to keep track of which type that might
be!

Prof. Michele Loreti Structures and Unions 118 / 120

Union Types: Example

t y p e d e f un ion { /∗ H e t e r o g e n e o u s t y p e . ∗/
i n t i v a l ;
f l o a t f v a l ;
} Utype ;

enum { INT , FLOAT } ; /∗ D e f i n e t y p e t a g s . ∗/

t y p e d e f s t r u c t {
i n t t y p e ; /∗ Tag f o r t h e c u r r e n t s t o r e d t y p e . ∗/

Utype v a l ; /∗ S t o r a g e f o r v a r i a n t t y p e . ∗/
} Var iantType ;

Var iantType a r r a y [5 0] ; /∗ H e t e r o g e n e o u s a r r a y . ∗/
a r r a y [0] . v a l . i v a l = 5 6 ; /∗ A s s i g n v a l u e . ∗/
a r r a y [0] . t y p e = INT ; /∗ Mark t y p e . ∗/
. . .

Prof. Michele Loreti Structures and Unions 119 / 120

To be continued. . .

Prof. Michele Loreti Structures and Unions 120 / 120

