
Exercise: List Data Structure

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Exercise: List Data Structure 121 / 154

List data strucure. . .

A List is represented via a struct :

t y p e d e f s t r u c t L i s t {
i n t v a l u e ;
s t r u c t L i s t ∗ n e x t ;

} L i s t ;

Remark: NULL represent the empty list.

Prof. Michele Loreti Exercise: List Data Structure 122 / 154

List data strucure. . .

A List is represented via a struct :

t y p e d e f s t r u c t L i s t {
i n t v a l u e ;
s t r u c t L i s t ∗ n e x t ;

} L i s t ;

Remark: NULL represent the empty list.

Prof. Michele Loreti Exercise: List Data Structure 122 / 154

List data strucure. . .

A List is represented via a struct :

t y p e d e f s t r u c t L i s t {
i n t v a l u e ;
s t r u c t L i s t ∗ n e x t ;

} L i s t ;

Remark: NULL represent the empty list.

Prof. Michele Loreti Exercise: List Data Structure 122 / 154

Operations. . .

Empty list:

L i s t ∗ empty () ;

L i s t ∗ empty () {
r e t u r n NULL ;

}

Check if empty:

i n t i sEmpty (L i s t ∗) ;

i n t i sEmpty (L i s t ∗ l i s t) {
r e t u r n l i s t == NULL ;

}

Prof. Michele Loreti Exercise: List Data Structure 123 / 154

Operations. . .

Empty list:

L i s t ∗ empty () ;

L i s t ∗ empty () {
r e t u r n NULL ;

}

Check if empty:

i n t i sEmpty (L i s t ∗) ;

i n t i sEmpty (L i s t ∗ l i s t) {
r e t u r n l i s t == NULL ;

}

Prof. Michele Loreti Exercise: List Data Structure 123 / 154

Operations. . .

Empty list:

L i s t ∗ empty () ;

L i s t ∗ empty () {
r e t u r n NULL ;

}

Check if empty:

i n t i sEmpty (L i s t ∗) ;

i n t i sEmpty (L i s t ∗ l i s t) {
r e t u r n l i s t == NULL ;

}

Prof. Michele Loreti Exercise: List Data Structure 123 / 154

Operations. . .

Empty list:

L i s t ∗ empty () ;

L i s t ∗ empty () {
r e t u r n NULL ;

}

Check if empty:

i n t i sEmpty (L i s t ∗) ;

i n t i sEmpty (L i s t ∗ l i s t) {
r e t u r n l i s t == NULL ;

}

Prof. Michele Loreti Exercise: List Data Structure 123 / 154

Operations. . .

Empty list:

L i s t ∗ empty () ;

L i s t ∗ empty () {
r e t u r n NULL ;

}

Check if empty:

i n t i sEmpty (L i s t ∗) ;

i n t i sEmpty (L i s t ∗ l i s t) {
r e t u r n l i s t == NULL ;

}

Prof. Michele Loreti Exercise: List Data Structure 123 / 154

Operations. . .

Empty list:

L i s t ∗ empty () ;

L i s t ∗ empty () {
r e t u r n NULL ;

}

Check if empty:

i n t i sEmpty (L i s t ∗) ;

i n t i sEmpty (L i s t ∗ l i s t) {
r e t u r n l i s t == NULL ;

}

Prof. Michele Loreti Exercise: List Data Structure 123 / 154

Operations. . .

Add an element:

L i s t ∗ add (L i s t ∗ , i n t) ;

L i s t ∗ c r e a t e L i s t E l e m e n t (i n t v , L i s t ∗ n e x t) {
L i s t ∗ n e w L i s t = m a l l o c (s i z e o f (L i s t)) ;
newLis t−>v a l u e = v ;
newLis t−>n e x t = n e x t ;
r e t u r n n e w L i s t ;

}

L i s t ∗ add (L i s t ∗ l i s t , i n t v) {
r e t u r n c r e a t e L i s t E l e m e n t (v , l i s t) ;

}

Prof. Michele Loreti Exercise: List Data Structure 124 / 154

Operations. . .

Add an element:

L i s t ∗ add (L i s t ∗ , i n t) ;

L i s t ∗ c r e a t e L i s t E l e m e n t (i n t v , L i s t ∗ n e x t) {
L i s t ∗ n e w L i s t = m a l l o c (s i z e o f (L i s t)) ;
newLis t−>v a l u e = v ;
newLis t−>n e x t = n e x t ;
r e t u r n n e w L i s t ;

}

L i s t ∗ add (L i s t ∗ l i s t , i n t v) {
r e t u r n c r e a t e L i s t E l e m e n t (v , l i s t) ;

}

Prof. Michele Loreti Exercise: List Data Structure 124 / 154

Operations. . .

Add an element:

L i s t ∗ add (L i s t ∗ , i n t) ;

L i s t ∗ c r e a t e L i s t E l e m e n t (i n t v , L i s t ∗ n e x t) {
L i s t ∗ n e w L i s t = m a l l o c (s i z e o f (L i s t)) ;
newLis t−>v a l u e = v ;
newLis t−>n e x t = n e x t ;
r e t u r n n e w L i s t ;

}

L i s t ∗ add (L i s t ∗ l i s t , i n t v) {
r e t u r n c r e a t e L i s t E l e m e n t (v , l i s t) ;

}

Prof. Michele Loreti Exercise: List Data Structure 124 / 154

Operations. . .

Number of elements in a list:

i n t s i z e (L i s t ∗) ;

i n t s i z e (L i s t ∗ l i s t) {
i n t c o u n t e r = 0 ;
w h i l e (l i s t != NULL) {

l i s t = l i s t −>n e x t ;
c o u n t e r ++;

}
r e t u r n c o u n t e r ;

}

Prof. Michele Loreti Exercise: List Data Structure 125 / 154

Operations. . .

Number of elements in a list:

i n t s i z e (L i s t ∗) ;

i n t s i z e (L i s t ∗ l i s t) {
i n t c o u n t e r = 0 ;
w h i l e (l i s t != NULL) {

l i s t = l i s t −>n e x t ;
c o u n t e r ++;

}
r e t u r n c o u n t e r ;

}

Prof. Michele Loreti Exercise: List Data Structure 125 / 154

Operations. . .

Number of elements in a list:

i n t s i z e (L i s t ∗) ;

i n t s i z e (L i s t ∗ l i s t) {
i n t c o u n t e r = 0 ;
w h i l e (l i s t != NULL) {

l i s t = l i s t −>n e x t ;
c o u n t e r ++;

}
r e t u r n c o u n t e r ;

}

Prof. Michele Loreti Exercise: List Data Structure 125 / 154

Operations. . .

Check if an element occurs in the list:

i n t c o n t a i n s (L i s t ∗ , i n t) ;

i n t c o n t a i n s (L i s t ∗ l i s t , i n t v) {
i n t r e s u l t = 0 ;
w h i l e ((! r e s u l t)&&(l i s t != NULL)) {

r e s u l t = (l i s t −>v a l u e==v) ;
l i s t = l i s t −>n e x t ;

}
r e t u r n r e s u l t ;

}

Prof. Michele Loreti Exercise: List Data Structure 126 / 154

Operations. . .

Check if an element occurs in the list:

i n t c o n t a i n s (L i s t ∗ , i n t) ;

i n t c o n t a i n s (L i s t ∗ l i s t , i n t v) {
i n t r e s u l t = 0 ;
w h i l e ((! r e s u l t)&&(l i s t != NULL)) {

r e s u l t = (l i s t −>v a l u e==v) ;
l i s t = l i s t −>n e x t ;

}
r e t u r n r e s u l t ;

}

Prof. Michele Loreti Exercise: List Data Structure 126 / 154

Operations. . .

Check if an element occurs in the list:

i n t c o n t a i n s (L i s t ∗ , i n t) ;

i n t c o n t a i n s (L i s t ∗ l i s t , i n t v) {
i n t r e s u l t = 0 ;
w h i l e ((! r e s u l t)&&(l i s t != NULL)) {

r e s u l t = (l i s t −>v a l u e==v) ;
l i s t = l i s t −>n e x t ;

}
r e t u r n r e s u l t ;

}

Prof. Michele Loreti Exercise: List Data Structure 126 / 154

Operations. . .

Remove an element from the list:

L i s t ∗ remove (L i s t ∗ , i n t) ;

L i s t ∗ remove (L i s t ∗ l i s t , i n t v) {
i f (l i s t == NULL) {

r e t u r n l i s t ;
}
i f (l i s t −>v a l u e == v) {

L i s t ∗ r e s u l t = l i s t −>n e x t ;
f r e e (l i s t) ;
r e t u r n r e s u l t ;

}
l i s t −>n e x t = remove (l i s t −>next , v) ;
r e t u r n l i s t ;

}

Prof. Michele Loreti Exercise: List Data Structure 127 / 154

Operations. . .

Remove an element from the list:

L i s t ∗ remove (L i s t ∗ , i n t) ;

L i s t ∗ remove (L i s t ∗ l i s t , i n t v) {
i f (l i s t == NULL) {

r e t u r n l i s t ;
}
i f (l i s t −>v a l u e == v) {

L i s t ∗ r e s u l t = l i s t −>n e x t ;
f r e e (l i s t) ;
r e t u r n r e s u l t ;

}
l i s t −>n e x t = remove (l i s t −>next , v) ;
r e t u r n l i s t ;

}

Prof. Michele Loreti Exercise: List Data Structure 127 / 154

Operations. . .

Remove an element from the list:

L i s t ∗ remove (L i s t ∗ , i n t) ;

L i s t ∗ remove (L i s t ∗ l i s t , i n t v) {
i f (l i s t == NULL) {

r e t u r n l i s t ;
}
i f (l i s t −>v a l u e == v) {

L i s t ∗ r e s u l t = l i s t −>n e x t ;
f r e e (l i s t) ;
r e t u r n r e s u l t ;

}
l i s t −>n e x t = remove (l i s t −>next , v) ;
r e t u r n l i s t ;

}

Prof. Michele Loreti Exercise: List Data Structure 127 / 154

Operations. . .

Add an element (in the correct order):

L i s t ∗ add InOrde r (L i s t ∗ , i n t) ;

L i s t ∗ add InOrde r (L i s t ∗ l i s t , i n t v) {
i f ((l i s t == NULL) | | (l i s t −>v a l u e>v)) {

r e t u r n c r e a t e L i s t E l e m e n t (v , NULL) ;
} e l s e {

l i s t −>n e x t = add InOrde r (l i s t −>next , v) ;
r e t u r n l i s t ;

}
}

Prof. Michele Loreti Exercise: List Data Structure 128 / 154

Operations. . .

Add an element (in the correct order):

L i s t ∗ add InOrde r (L i s t ∗ , i n t) ;

L i s t ∗ add InOrde r (L i s t ∗ l i s t , i n t v) {
i f ((l i s t == NULL) | | (l i s t −>v a l u e>v)) {

r e t u r n c r e a t e L i s t E l e m e n t (v , NULL) ;
} e l s e {

l i s t −>n e x t = add InOrde r (l i s t −>next , v) ;
r e t u r n l i s t ;

}
}

Prof. Michele Loreti Exercise: List Data Structure 128 / 154

Operations. . .

Add an element (in the correct order):

L i s t ∗ add InOrde r (L i s t ∗ , i n t) ;

L i s t ∗ add InOrde r (L i s t ∗ l i s t , i n t v) {
i f ((l i s t == NULL) | | (l i s t −>v a l u e>v)) {

r e t u r n c r e a t e L i s t E l e m e n t (v , NULL) ;
} e l s e {

l i s t −>n e x t = add InOrde r (l i s t −>next , v) ;
r e t u r n l i s t ;

}
}

Prof. Michele Loreti Exercise: List Data Structure 128 / 154

Operations. . .

Sort a list:

L i s t ∗ s o r t (L i s t ∗ l i s t) ;

L i s t ∗ s o r t (L i s t ∗ l i s t) {
L i s t ∗ r e s u l t = NULL ;
w h i l e (l i s t != NULL) {

r e s u l t = a ddInO rder (r e s u l t , l i s t −>v a l u e) ;
l i s t = l i s t −>n e x t ;

}
r e t u r n r e s u l t ;

}

Prof. Michele Loreti Exercise: List Data Structure 129 / 154

Operations. . .

Sort a list:

L i s t ∗ s o r t (L i s t ∗ l i s t) ;

L i s t ∗ s o r t (L i s t ∗ l i s t) {
L i s t ∗ r e s u l t = NULL ;
w h i l e (l i s t != NULL) {

r e s u l t = a ddInO rder (r e s u l t , l i s t −>v a l u e) ;
l i s t = l i s t −>n e x t ;

}
r e t u r n r e s u l t ;

}

Prof. Michele Loreti Exercise: List Data Structure 129 / 154

Operations. . .

Sort a list:

L i s t ∗ s o r t (L i s t ∗ l i s t) ;

L i s t ∗ s o r t (L i s t ∗ l i s t) {
L i s t ∗ r e s u l t = NULL ;
w h i l e (l i s t != NULL) {

r e s u l t = a ddInO rder (r e s u l t , l i s t −>v a l u e) ;
l i s t = l i s t −>n e x t ;

}
r e t u r n r e s u l t ;

}

Prof. Michele Loreti Exercise: List Data Structure 129 / 154

To be continued. . .

Prof. Michele Loreti Exercise: List Data Structure 130 / 154

Concepts of System Programming

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Concepts of System Programming 131 / 154

Files and the Filesystem

The file is the most basic and fundamental abstraction in Linux.

Linux follows the everything-is-a-file philosophy. . .

. . . much interaction occurs via reading of and writing to files;

. . . examples are stardard input (stdin), standard output (stdout) and
standard error (sdterr).

To be accessed a file must first be opened.

When a file is opened it is referenced via a file descriptor (fd). In Linux
this is an integer.

Prof. Michele Loreti Concepts of System Programming 132 / 154

Files and the Filesystem

The file is the most basic and fundamental abstraction in Linux.

Linux follows the everything-is-a-file philosophy

. . .

. . . much interaction occurs via reading of and writing to files;

. . . examples are stardard input (stdin), standard output (stdout) and
standard error (sdterr).

To be accessed a file must first be opened.

When a file is opened it is referenced via a file descriptor (fd). In Linux
this is an integer.

Prof. Michele Loreti Concepts of System Programming 132 / 154

Files and the Filesystem

The file is the most basic and fundamental abstraction in Linux.

Linux follows the everything-is-a-file philosophy. . .

. . . much interaction occurs via reading of and writing to files;

. . . examples are stardard input (stdin), standard output (stdout) and
standard error (sdterr).

To be accessed a file must first be opened.

When a file is opened it is referenced via a file descriptor (fd). In Linux
this is an integer.

Prof. Michele Loreti Concepts of System Programming 132 / 154

Files and the Filesystem

The file is the most basic and fundamental abstraction in Linux.

Linux follows the everything-is-a-file philosophy. . .

. . . much interaction occurs via reading of and writing to files;

. . . examples are stardard input (stdin), standard output (stdout) and
standard error (sdterr).

To be accessed a file must first be opened.

When a file is opened it is referenced via a file descriptor (fd). In Linux
this is an integer.

Prof. Michele Loreti Concepts of System Programming 132 / 154

Files and the Filesystem

The file is the most basic and fundamental abstraction in Linux.

Linux follows the everything-is-a-file philosophy. . .

. . . much interaction occurs via reading of and writing to files;

. . . examples are stardard input (stdin), standard output (stdout) and
standard error (sdterr).

To be accessed a file must first be opened.

When a file is opened it is referenced via a file descriptor (fd). In Linux
this is an integer.

Prof. Michele Loreti Concepts of System Programming 132 / 154

Files and the Filesystem

The file is the most basic and fundamental abstraction in Linux.

Linux follows the everything-is-a-file philosophy. . .

. . . much interaction occurs via reading of and writing to files;

. . . examples are stardard input (stdin), standard output (stdout) and
standard error (sdterr).

To be accessed a file must first be opened.

When a file is opened it is referenced via a file descriptor (fd). In Linux
this is an integer.

Prof. Michele Loreti Concepts of System Programming 132 / 154

Files and the Filesystem

The file is the most basic and fundamental abstraction in Linux.

Linux follows the everything-is-a-file philosophy. . .

. . . much interaction occurs via reading of and writing to files;

. . . examples are stardard input (stdin), standard output (stdout) and
standard error (sdterr).

To be accessed a file must first be opened.

When a file is opened it is referenced via a file descriptor (fd). In Linux
this is an integer.

Prof. Michele Loreti Concepts of System Programming 132 / 154

File Types. . .

Regular Files: A regular file contains bytes of data, organised into a linear
array called a byte stream. . .

� any byte in the file can be read or written;

� operations are performed at a location that is file position or offset;

� the maximum position (i.e. the max number of bytes) is limited by
the data type used to represent it;

� The size of a file is measured in bytes and is called its length.

A file can be accessed via a filename or via an inode (information node).

An inode, that is identified by a inode number, stores metadata associated
with a file, such as its modification timestamp, owner, type, length, and
the location of the file’s data-but no filename!

Prof. Michele Loreti Concepts of System Programming 133 / 154

File Types. . .

Regular Files: A regular file contains bytes of data, organised into a linear
array called a byte stream. . .

� any byte in the file can be read or written;

� operations are performed at a location that is file position or offset;

� the maximum position (i.e. the max number of bytes) is limited by
the data type used to represent it;

� The size of a file is measured in bytes and is called its length.

A file can be accessed via a filename or via an inode (information node).

An inode, that is identified by a inode number, stores metadata associated
with a file, such as its modification timestamp, owner, type, length, and
the location of the file’s data-but no filename!

Prof. Michele Loreti Concepts of System Programming 133 / 154

File Types. . .

Regular Files: A regular file contains bytes of data, organised into a linear
array called a byte stream. . .

� any byte in the file can be read or written;

� operations are performed at a location that is file position or offset;

� the maximum position (i.e. the max number of bytes) is limited by
the data type used to represent it;

� The size of a file is measured in bytes and is called its length.

A file can be accessed via a filename or via an inode (information node).

An inode, that is identified by a inode number, stores metadata associated
with a file, such as its modification timestamp, owner, type, length, and
the location of the file’s data-but no filename!

Prof. Michele Loreti Concepts of System Programming 133 / 154

File Types. . .

Regular Files: A regular file contains bytes of data, organised into a linear
array called a byte stream. . .

� any byte in the file can be read or written;

� operations are performed at a location that is file position or offset;

� the maximum position (i.e. the max number of bytes) is limited by
the data type used to represent it;

� The size of a file is measured in bytes and is called its length.

A file can be accessed via a filename or via an inode (information node).

An inode, that is identified by a inode number, stores metadata associated
with a file, such as its modification timestamp, owner, type, length, and
the location of the file’s data-but no filename!

Prof. Michele Loreti Concepts of System Programming 133 / 154

File Types. . .

Regular Files: A regular file contains bytes of data, organised into a linear
array called a byte stream. . .

� any byte in the file can be read or written;

� operations are performed at a location that is file position or offset;

� the maximum position (i.e. the max number of bytes) is limited by
the data type used to represent it;

� The size of a file is measured in bytes and is called its length.

A file can be accessed via a filename or via an inode (information node).

An inode, that is identified by a inode number, stores metadata associated
with a file, such as its modification timestamp, owner, type, length, and
the location of the file’s data-but no filename!

Prof. Michele Loreti Concepts of System Programming 133 / 154

File Types. . .

Regular Files: A regular file contains bytes of data, organised into a linear
array called a byte stream. . .

� any byte in the file can be read or written;

� operations are performed at a location that is file position or offset;

� the maximum position (i.e. the max number of bytes) is limited by
the data type used to represent it;

� The size of a file is measured in bytes and is called its length.

A file can be accessed via a filename or via an inode (information node).

An inode, that is identified by a inode number, stores metadata associated
with a file, such as its modification timestamp, owner, type, length, and
the location of the file’s data-but no filename!

Prof. Michele Loreti Concepts of System Programming 133 / 154

File Types. . .

Regular Files: A regular file contains bytes of data, organised into a linear
array called a byte stream. . .

� any byte in the file can be read or written;

� operations are performed at a location that is file position or offset;

� the maximum position (i.e. the max number of bytes) is limited by
the data type used to represent it;

� The size of a file is measured in bytes and is called its length.

A file can be accessed via a filename or via an inode (information node).

An inode, that is identified by a inode number, stores metadata associated
with a file, such as its modification timestamp, owner, type, length, and
the location of the file’s data-but no filename!

Prof. Michele Loreti Concepts of System Programming 133 / 154

File Types. . .

Regular Files: A regular file contains bytes of data, organised into a linear
array called a byte stream. . .

� any byte in the file can be read or written;

� operations are performed at a location that is file position or offset;

� the maximum position (i.e. the max number of bytes) is limited by
the data type used to represent it;

� The size of a file is measured in bytes and is called its length.

A file can be accessed via a filename or via an inode (information node).

An inode, that is identified by a inode number, stores metadata associated
with a file, such as its modification timestamp, owner, type, length, and
the location of the file’s data-but no filename!

Prof. Michele Loreti Concepts of System Programming 133 / 154

File Types. . .

Accessing a file via its inode number is cumbersome (and also a potential
security hole), so files are always opened from user space by a name, not
an inode number.

Directories: are used to provide the names with which to access files.

Link: is a pair name-inode. There are two kinds of links:

� hard links;

� symbolic links.

Special files: are kernel objects that are represented as files (e.g. USB or
serial ports).

Prof. Michele Loreti Concepts of System Programming 134 / 154

File Types. . .

Accessing a file via its inode number is cumbersome (and also a potential
security hole), so files are always opened from user space by a name, not
an inode number.

Directories: are used to provide the names with which to access files.

Link: is a pair name-inode. There are two kinds of links:

� hard links;

� symbolic links.

Special files: are kernel objects that are represented as files (e.g. USB or
serial ports).

Prof. Michele Loreti Concepts of System Programming 134 / 154

File Types. . .

Accessing a file via its inode number is cumbersome (and also a potential
security hole), so files are always opened from user space by a name, not
an inode number.

Directories: are used to provide the names with which to access files.

Link: is a pair name-inode.

There are two kinds of links:

� hard links;

� symbolic links.

Special files: are kernel objects that are represented as files (e.g. USB or
serial ports).

Prof. Michele Loreti Concepts of System Programming 134 / 154

File Types. . .

Accessing a file via its inode number is cumbersome (and also a potential
security hole), so files are always opened from user space by a name, not
an inode number.

Directories: are used to provide the names with which to access files.

Link: is a pair name-inode. There are two kinds of links:

� hard links;

� symbolic links.

Special files: are kernel objects that are represented as files (e.g. USB or
serial ports).

Prof. Michele Loreti Concepts of System Programming 134 / 154

File Types. . .

Accessing a file via its inode number is cumbersome (and also a potential
security hole), so files are always opened from user space by a name, not
an inode number.

Directories: are used to provide the names with which to access files.

Link: is a pair name-inode. There are two kinds of links:

� hard links;

� symbolic links.

Special files: are kernel objects that are represented as files (e.g. USB or
serial ports).

Prof. Michele Loreti Concepts of System Programming 134 / 154

Filesystems and namespaces

Linux, like all Unix systems, provides a global and unified namespace of
files and directories.

A filesystem is a collection of files and directories in a formal and valid
hierarchy.

Filesystems may be individually added to and removed from the global
namespace of files and directories.

These operations are called mounting and unmounting.

Each filesystem is mounted to a specific location in the namespace, known
as a mount point.

Prof. Michele Loreti Concepts of System Programming 135 / 154

Filesystems and namespaces

Linux, like all Unix systems, provides a global and unified namespace of
files and directories.

A filesystem is a collection of files and directories in a formal and valid
hierarchy.

Filesystems may be individually added to and removed from the global
namespace of files and directories.

These operations are called mounting and unmounting.

Each filesystem is mounted to a specific location in the namespace, known
as a mount point.

Prof. Michele Loreti Concepts of System Programming 135 / 154

Filesystems and namespaces

Linux, like all Unix systems, provides a global and unified namespace of
files and directories.

A filesystem is a collection of files and directories in a formal and valid
hierarchy.

Filesystems may be individually added to and removed from the global
namespace of files and directories.

These operations are called mounting and unmounting.

Each filesystem is mounted to a specific location in the namespace, known
as a mount point.

Prof. Michele Loreti Concepts of System Programming 135 / 154

Filesystems and namespaces

Linux, like all Unix systems, provides a global and unified namespace of
files and directories.

A filesystem is a collection of files and directories in a formal and valid
hierarchy.

Filesystems may be individually added to and removed from the global
namespace of files and directories.

These operations are called mounting and unmounting.

Each filesystem is mounted to a specific location in the namespace, known
as a mount point.

Prof. Michele Loreti Concepts of System Programming 135 / 154

Processes

Processes are object code in execution: active, running programs. They
cconsist of data, resources, state, and a virtualised computer.

Processes begin life as executable object code, which is machine-runnable
code in an executable format that the kernel understands. The format
most common in Linux is called Executable and Linkable Format (ELF),

The executable format contains metadata, and multiple sections of code
and data:

� text section;

� data section;

� bss section1;

� absolute section;

� undefined section.

1bss=Block Started by Symbols
Prof. Michele Loreti Concepts of System Programming 136 / 154

Processes

Processes are object code in execution: active, running programs. They
cconsist of data, resources, state, and a virtualised computer.

Processes begin life as executable object code, which is machine-runnable
code in an executable format that the kernel understands. The format
most common in Linux is called Executable and Linkable Format (ELF),

The executable format contains metadata, and multiple sections of code
and data:

� text section;

� data section;

� bss section1;

� absolute section;

� undefined section.

1bss=Block Started by Symbols
Prof. Michele Loreti Concepts of System Programming 136 / 154

Processes

Processes are object code in execution: active, running programs. They
cconsist of data, resources, state, and a virtualised computer.

Processes begin life as executable object code, which is machine-runnable
code in an executable format that the kernel understands. The format
most common in Linux is called Executable and Linkable Format (ELF),

The executable format contains metadata, and multiple sections of code
and data:

� text section;

� data section;

� bss section1;

� absolute section;

� undefined section.

1bss=Block Started by Symbols
Prof. Michele Loreti Concepts of System Programming 136 / 154

Users and Groups

Authorisation in Linux is provided by users and groups.

Each user is associated with a unique positive integer called the user ID
(uid).

Each user belongs to one or more groups, including a primary or login
group. Each group is identified via a group id (gid).

Each process is in turn associated with exactly one uid, which identifies
the user running the process, and is called the process’s real uid.

Prof. Michele Loreti Concepts of System Programming 137 / 154

Users and Groups

Authorisation in Linux is provided by users and groups.

Each user is associated with a unique positive integer called the user ID
(uid).

Each user belongs to one or more groups, including a primary or login
group. Each group is identified via a group id (gid).

Each process is in turn associated with exactly one uid, which identifies
the user running the process, and is called the process’s real uid.

Prof. Michele Loreti Concepts of System Programming 137 / 154

Users and Groups

Authorisation in Linux is provided by users and groups.

Each user is associated with a unique positive integer called the user ID
(uid).

Each user belongs to one or more groups, including a primary or login
group. Each group is identified via a group id (gid).

Each process is in turn associated with exactly one uid, which identifies
the user running the process, and is called the process’s real uid.

Prof. Michele Loreti Concepts of System Programming 137 / 154

Users and Groups

Authorisation in Linux is provided by users and groups.

Each user is associated with a unique positive integer called the user ID
(uid).

Each user belongs to one or more groups, including a primary or login
group. Each group is identified via a group id (gid).

Each process is in turn associated with exactly one uid, which identifies
the user running the process, and is called the process’s real uid.

Prof. Michele Loreti Concepts of System Programming 137 / 154

Permissions

In Unix/Linux each file is associated with:

� an owning user;

� an owning group;

� and and three sets of permission bits.

The bits describe the ability of the owning user, the owning group, and
everybody else to read, write, and execute the file.

The owners and the permissions are stored in the file’s inode.

Octal values can be used to set permissions.

Prof. Michele Loreti Concepts of System Programming 138 / 154

Permissions

In Unix/Linux each file is associated with:

� an owning user;

� an owning group;

� and and three sets of permission bits.

The bits describe the ability of the owning user, the owning group, and
everybody else to read, write, and execute the file.

The owners and the permissions are stored in the file’s inode.

Octal values can be used to set permissions.

Prof. Michele Loreti Concepts of System Programming 138 / 154

Permissions

In Unix/Linux each file is associated with:

� an owning user;

� an owning group;

� and and three sets of permission bits.

The bits describe the ability of the owning user, the owning group, and
everybody else to read, write, and execute the file.

The owners and the permissions are stored in the file’s inode.

Octal values can be used to set permissions.

Prof. Michele Loreti Concepts of System Programming 138 / 154

Permissions

In Unix/Linux each file is associated with:

� an owning user;

� an owning group;

� and and three sets of permission bits.

The bits describe the ability of the owning user, the owning group, and
everybody else to read, write, and execute the file.

The owners and the permissions are stored in the file’s inode.

Octal values can be used to set permissions.

Prof. Michele Loreti Concepts of System Programming 138 / 154

Error Handling

In system programming, an error is signified via a function’s return value
and described via a special variable, errno.

glibc transparently provides errno support for both library and system calls.

This variable is declared in <errno.h> as follows:

e x t e r n i n t e r r n o ;

The errno variable may be read or written directly.

Prof. Michele Loreti Concepts of System Programming 139 / 154

Error Handling

In system programming, an error is signified via a function’s return value
and described via a special variable, errno.

glibc transparently provides errno support for both library and system calls.

This variable is declared in <errno.h> as follows:

e x t e r n i n t e r r n o ;

The errno variable may be read or written directly.

Prof. Michele Loreti Concepts of System Programming 139 / 154

Error Handling

In system programming, an error is signified via a function’s return value
and described via a special variable, errno.

glibc transparently provides errno support for both library and system calls.

This variable is declared in <errno.h> as follows:

e x t e r n i n t e r r n o ;

The errno variable may be read or written directly.

Prof. Michele Loreti Concepts of System Programming 139 / 154

Error Handling

In system programming, an error is signified via a function’s return value
and described via a special variable, errno.

glibc transparently provides errno support for both library and system calls.

This variable is declared in <errno.h> as follows:

e x t e r n i n t e r r n o ;

The errno variable may be read or written directly.

Prof. Michele Loreti Concepts of System Programming 139 / 154

Error Handling

The C library provides a handful of functions for translating an errno value
to the corresponding textual representation:

#i n c l u d e <s t d i o . h>

v o i d p e r r o r (c o n s t c h a r ∗ s t r) ;

This function prints to stderr (standard error) the string representation of
the current error described by errno, prefixed by the string pointed at by
str , followed by a colon.

Prof. Michele Loreti Concepts of System Programming 140 / 154

Error Handling

The C library provides a handful of functions for translating an errno value
to the corresponding textual representation:

#i n c l u d e <s t d i o . h>

v o i d p e r r o r (c o n s t c h a r ∗ s t r) ;

This function prints to stderr (standard error) the string representation of
the current error described by errno, prefixed by the string pointed at by
str , followed by a colon.

Prof. Michele Loreti Concepts of System Programming 140 / 154

Error Handling

The C library provides a handful of functions for translating an errno value
to the corresponding textual representation:

#i n c l u d e <s t d i o . h>

v o i d p e r r o r (c o n s t c h a r ∗ s t r) ;

This function prints to stderr (standard error) the string representation of
the current error described by errno, prefixed by the string pointed at by
str , followed by a colon.

Prof. Michele Loreti Concepts of System Programming 140 / 154

To be continued. . .

Prof. Michele Loreti Concepts of System Programming 141 / 154

Input/Output

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Input/Output 142 / 154

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 154

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 154

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 154

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 154

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 154

File descriptors. . .

Before a file can be read from or written to, it must be opened.

The kernel maintains a per-process list of open files, called the file table.

Definition:A process is a running program!

File table is indexed via nonnegative integers known as file descriptors
(often abbreviated fds).

Each entry in the list contains information about the file (permissions,
location,. . .).

File descriptors are obtained when a file is opened, and used to perform
file operations..

Prof. Michele Loreti Input/Output 143 / 154

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 154

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 154

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 154

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 154

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 154

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 154

File descriptors. . .

File descriptors are represented by the C int type.

Each Linux process has a maximum number of files that it may open:

� start from 0 and go up to one less than this maximum value;

� by default this max value is 1024, however can be increased up to
1048576;

� −1 is used to indicate an error.

Each process has at least three file descriptors:

� standard input: 0 (STDIN FILENO);

� standard output: 1 (STDOUT FILENO);

� standard error: 2 (STDERR FILENO);.

Prof. Michele Loreti Input/Output 144 / 154

Opening files. . .

A file is opened and a file descriptor is obtained with the open() system call:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>

i n t open (c o n s t c h a r ∗name , i n t f l a g s) ;
i n t open (c o n s t c h a r ∗name , i n t f l a g s , mode t mode) ;

Example:

i n t f d ;
f d = open (”/home/ p i t o n / p o t i o n s ” , O RDONLY) ;
i f (fd <0) {

// E r r o r !
}

Prof. Michele Loreti Input/Output 145 / 154

Opening files. . .

A file is opened and a file descriptor is obtained with the open() system call:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>

i n t open (c o n s t c h a r ∗name , i n t f l a g s) ;
i n t open (c o n s t c h a r ∗name , i n t f l a g s , mode t mode) ;

Example:

i n t f d ;
f d = open (”/home/ p i t o n / p o t i o n s ” , O RDONLY) ;
i f (fd <0) {

// E r r o r !
}

Prof. Michele Loreti Input/Output 145 / 154

Opening files. . .

A file is opened and a file descriptor is obtained with the open() system call:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>

i n t open (c o n s t c h a r ∗name , i n t f l a g s) ;
i n t open (c o n s t c h a r ∗name , i n t f l a g s , mode t mode) ;

Example:

i n t f d ;
f d = open (”/home/ p i t o n / p o t i o n s ” , O RDONLY) ;
i f (fd <0) {

// E r r o r !
}

Prof. Michele Loreti Input/Output 145 / 154

Opening flags. . .

flags argument may be bitwise-ORed with zero or more of the following
values, modifying the behavior of the open request:

� O RDONLY

� O WRONLY

� O RDWR

� O APPEND

� O ASYNC

� O CLOEXEC

� O CREAT

� O DIRECT

� O DIRECTORY

� O EXCL

� O LARGEFILE

� . . .

Prof. Michele Loreti Input/Output 146 / 154

Opening modes. . .

Parameter mode provides the permissions of the newly created file.

It is composed by an octal value with three digits represeting:

� User permission;

� Group permission;

� Others permiossion.

Each digit consists of three bits rwx indicating read, write and exec
permissions.

Prof. Michele Loreti Input/Output 147 / 154

Opening modes. . .

Parameter mode provides the permissions of the newly created file.

It is composed by an octal value with three digits represeting:

� User permission;

� Group permission;

� Others permiossion.

Each digit consists of three bits rwx indicating read, write and exec
permissions.

Prof. Michele Loreti Input/Output 147 / 154

Opening modes. . .

Parameter mode provides the permissions of the newly created file.

It is composed by an octal value with three digits represeting:

� User permission;

� Group permission;

� Others permiossion.

Each digit consists of three bits rwx indicating read, write and exec
permissions.

Prof. Michele Loreti Input/Output 147 / 154

Example. . .

i n t f d ;
f d = open (f i l e , O WRONLY | O CREAT | O TRUNC, 0664) ;
i f (f d == −1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 148 / 154

Creating a file. . .

The combination of O WRONLY | O CREAT | O TRUNC is so common that a
system call exists to provide just that behaviour:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>
i n t c r e a t (c o n s t c h a r ∗name , mode t mode) ;

This is not a typo!

i n t f d ;
f d = c r e a t (f i l e n a m e , 0644) ;
i f (f d == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 149 / 154

Creating a file. . .

The combination of O WRONLY | O CREAT | O TRUNC is so common that a
system call exists to provide just that behaviour:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>
i n t c r e a t (c o n s t c h a r ∗name , mode t mode) ;

This is not a typo!

i n t f d ;
f d = c r e a t (f i l e n a m e , 0644) ;
i f (f d == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 149 / 154

Creating a file. . .

The combination of O WRONLY | O CREAT | O TRUNC is so common that a
system call exists to provide just that behaviour:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>
i n t c r e a t (c o n s t c h a r ∗name , mode t mode) ;

This is not a typo!

i n t f d ;
f d = c r e a t (f i l e n a m e , 0644) ;
i f (f d == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 149 / 154

Creating a file. . .

The combination of O WRONLY | O CREAT | O TRUNC is so common that a
system call exists to provide just that behaviour:

#i n c l u d e <s y s / t y p e s . h>
#i n c l u d e <s y s / s t a t . h>
#i n c l u d e < f c n t l . h>
i n t c r e a t (c o n s t c h a r ∗name , mode t mode) ;

This is not a typo!

i n t f d ;
f d = c r e a t (f i l e n a m e , 0644) ;
i f (f d == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 149 / 154

Reading from files:

The most basic mechanism used for reading is the read() system call:

#i n c l u d e <u n i s t d . h>
s s i z e t r e a d (i n t fd , v o i d ∗buf , s i z e t l e n) ;

Example:

u n s i g n e d l o n g word ;
s s i z e t nr ;

/∗ r e a d a c o u p l e b y t e s i n t o ’ word ’ from ’ f d ’ ∗/
nr = r e a d (fd , &word , s i z e o f (u n s i g n e d l o n g)) ;
i f (nr == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 150 / 154

Reading from files:

The most basic mechanism used for reading is the read() system call:

#i n c l u d e <u n i s t d . h>
s s i z e t r e a d (i n t fd , v o i d ∗buf , s i z e t l e n) ;

Example:

u n s i g n e d l o n g word ;
s s i z e t nr ;

/∗ r e a d a c o u p l e b y t e s i n t o ’ word ’ from ’ f d ’ ∗/
nr = r e a d (fd , &word , s i z e o f (u n s i g n e d l o n g)) ;
i f (nr == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 150 / 154

Reading from files:

The most basic mechanism used for reading is the read() system call:

#i n c l u d e <u n i s t d . h>
s s i z e t r e a d (i n t fd , v o i d ∗buf , s i z e t l e n) ;

Example:

u n s i g n e d l o n g word ;
s s i z e t nr ;

/∗ r e a d a c o u p l e b y t e s i n t o ’ word ’ from ’ f d ’ ∗/
nr = r e a d (fd , &word , s i z e o f (u n s i g n e d l o n g)) ;
i f (nr == 1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 150 / 154

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 151 / 154

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 151 / 154

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 151 / 154

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 151 / 154

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;

� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 151 / 154

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 151 / 154

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);

� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 151 / 154

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);

� . . .

Prof. Michele Loreti Input/Output 151 / 154

read(): Return Values

System call read returns the number of bytes that are read from the file:

r e t = r e a d (f d , buf , l e n)

� ret is equal to len;

� ret is less than len;

� ret is 0, end-of-file has been reached;
� ret is −1, there is an error, a code is store in variable errno:

� EINTR (operation has been suspended, and it can be reissued);
� EAGAIN (no data is available, operation should be reissued later);
� . . .

Prof. Michele Loreti Input/Output 151 / 154

Example: reading all bytes

s s i z e t r e t ;
w h i l e (l e n != 0 && (r e t = r e a d (fd , buf , l e n)) != 0) {

i f (r e t ==−1) {
i f (e r r n o == EINTR)

c o n t i n u e ;
p e r r o r (” r e a d ”) ;

b r e a k ;
}

l e n −= r e t ;
buf += r e t ;

}

Prof. Michele Loreti Input/Output 152 / 154

Writing on files

The most basic and common system call used for writing is write ():

#i n c l u d e <u n i s t d . h>
s s i z e t w r i t e (i n t fd , c o n s t v o i d ∗buf , s i z e t count) ;

A call to write () writes up to count bytes starting at buf to the current
position of the file referenced by the file descriptor fd.

Example:

c o n s t c h a r ∗ buf = ”My s h i p i s s o l i d ! ” ;
s s i z e t nr ;
/∗ w r i t e t he s t r i n g i n ’ buf ’ to ’ f d ’ ∗/
nr = w r i t e (fd , buf , s t r l e n (buf)) ;
i f (nr == −1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 153 / 154

Writing on files

The most basic and common system call used for writing is write ():

#i n c l u d e <u n i s t d . h>
s s i z e t w r i t e (i n t fd , c o n s t v o i d ∗buf , s i z e t count) ;

A call to write () writes up to count bytes starting at buf to the current
position of the file referenced by the file descriptor fd.

Example:

c o n s t c h a r ∗ buf = ”My s h i p i s s o l i d ! ” ;
s s i z e t nr ;
/∗ w r i t e t he s t r i n g i n ’ buf ’ to ’ f d ’ ∗/
nr = w r i t e (fd , buf , s t r l e n (buf)) ;
i f (nr == −1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 153 / 154

Writing on files

The most basic and common system call used for writing is write ():

#i n c l u d e <u n i s t d . h>
s s i z e t w r i t e (i n t fd , c o n s t v o i d ∗buf , s i z e t count) ;

A call to write () writes up to count bytes starting at buf to the current
position of the file referenced by the file descriptor fd.

Example:

c o n s t c h a r ∗ buf = ”My s h i p i s s o l i d ! ” ;
s s i z e t nr ;
/∗ w r i t e t he s t r i n g i n ’ buf ’ to ’ f d ’ ∗/
nr = w r i t e (fd , buf , s t r l e n (buf)) ;
i f (nr == −1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 153 / 154

Writing on files

The most basic and common system call used for writing is write ():

#i n c l u d e <u n i s t d . h>
s s i z e t w r i t e (i n t fd , c o n s t v o i d ∗buf , s i z e t count) ;

A call to write () writes up to count bytes starting at buf to the current
position of the file referenced by the file descriptor fd.

Example:

c o n s t c h a r ∗ buf = ”My s h i p i s s o l i d ! ” ;
s s i z e t nr ;
/∗ w r i t e t he s t r i n g i n ’ buf ’ to ’ f d ’ ∗/
nr = w r i t e (fd , buf , s t r l e n (buf)) ;
i f (nr == −1) {

/∗ e r r o r ∗/
}

Prof. Michele Loreti Input/Output 153 / 154

To be continued. . .

Prof. Michele Loreti Input/Output 154 / 154

