
Process Management

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Process Management 177 / 218

Programs, Processes, and Threads

Program colloquially refers to executable files.

A process is a running program.

A thread is the unit of activity of a process.

Prof. Michele Loreti Process Management 178 / 218

Programs, Processes, and Threads

Program colloquially refers to executable files.

A process is a running program.

A thread is the unit of activity of a process.

Prof. Michele Loreti Process Management 178 / 218

Programs, Processes, and Threads

Program colloquially refers to executable files.

A process is a running program.

A thread is the unit of activity of a process.

Prof. Michele Loreti Process Management 178 / 218

Processes

Each process is identified by a Process ID (pid).

PID is guaranteed to be unique at any single point in time.

. . . pid can be re-used!

. . . from the point of view of a process, its pid never changes!

Process ID Allocation
By default, Linux kernel imposes a maximum process ID value of 32768

. . . pids are allocated sequentially;

. . . a new pid is allocated until the max id has been allocated.

Prof. Michele Loreti Process Management 179 / 218

Processes

Each process is identified by a Process ID (pid).

PID is guaranteed to be unique at any single point in time.

. . . pid can be re-used!

. . . from the point of view of a process, its pid never changes!

Process ID Allocation
By default, Linux kernel imposes a maximum process ID value of 32768

. . . pids are allocated sequentially;

. . . a new pid is allocated until the max id has been allocated.

Prof. Michele Loreti Process Management 179 / 218

Processes

Each process is identified by a Process ID (pid).

PID is guaranteed to be unique at any single point in time.

. . . pid can be re-used!

. . . from the point of view of a process, its pid never changes!

Process ID Allocation
By default, Linux kernel imposes a maximum process ID value of 32768

. . . pids are allocated sequentially;

. . . a new pid is allocated until the max id has been allocated.

Prof. Michele Loreti Process Management 179 / 218

Processes

Each process is identified by a Process ID (pid).

PID is guaranteed to be unique at any single point in time.

. . . pid can be re-used!

. . . from the point of view of a process, its pid never changes!

Process ID Allocation
By default, Linux kernel imposes a maximum process ID value of 32768

. . . pids are allocated sequentially;

. . . a new pid is allocated until the max id has been allocated.

Prof. Michele Loreti Process Management 179 / 218

Processes

Each process is identified by a Process ID (pid).

PID is guaranteed to be unique at any single point in time.

. . . pid can be re-used!

. . . from the point of view of a process, its pid never changes!

Process ID Allocation
By default, Linux kernel imposes a maximum process ID value of 32768

. . . pids are allocated sequentially;

. . . a new pid is allocated until the max id has been allocated.

Prof. Michele Loreti Process Management 179 / 218

Process Hierarchy

The process that spawns a new process is known as the parent; the new
process is known as the child.

Every process is spawned from another process (except the init process
that is the first executed!).

This relationship is recorded in each process’s parent process ID (ppid),
which is the pid of the child’s parent.

Prof. Michele Loreti Process Management 180 / 218

Process Hierarchy

The process that spawns a new process is known as the parent; the new
process is known as the child.

Every process is spawned from another process (except the init process
that is the first executed!).

This relationship is recorded in each process’s parent process ID (ppid),
which is the pid of the child’s parent.

Prof. Michele Loreti Process Management 180 / 218

Process Hierarchy

The process that spawns a new process is known as the parent; the new
process is known as the child.

Every process is spawned from another process (except the init process
that is the first executed!).

This relationship is recorded in each process’s parent process ID (ppid),
which is the pid of the child’s parent.

Prof. Michele Loreti Process Management 180 / 218

Parent and Process ID...

The process ID is represented by the pid t type, which is defined in the
header file <sys/types.h>.

Function getpid can be used to retrieve the process id:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <un i s t d . h>

p i d t g e t p i d (vo i d) ;

. . . while function getppid returns the Parent Process ID:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <un i s t d . h>

p i d t g e tpp i d (vo i d) ;

Prof. Michele Loreti Process Management 181 / 218

Parent and Process ID...

The process ID is represented by the pid t type, which is defined in the
header file <sys/types.h>.

Function getpid can be used to retrieve the process id:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <un i s t d . h>

p i d t g e t p i d (vo i d) ;

. . . while function getppid returns the Parent Process ID:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <un i s t d . h>

p i d t g e tpp i d (vo i d) ;

Prof. Michele Loreti Process Management 181 / 218

Parent and Process ID...

The process ID is represented by the pid t type, which is defined in the
header file <sys/types.h>.

Function getpid can be used to retrieve the process id:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <un i s t d . h>

p i d t g e t p i d (vo i d) ;

. . . while function getppid returns the Parent Process ID:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <un i s t d . h>

p i d t g e tpp i d (vo i d) ;

Prof. Michele Loreti Process Management 181 / 218

Executing a new process

Standard C library provides a set of functions that can be used to execute
another process:

#i n c l u d e <un i s t d . h>
i n t e x e c l (con s t cha r ∗path , con s t cha r ∗ arg ,

. . .) ;

A call to execl () replaces the current process image with a new one by
loading into memory the program pointed at by path.

i n t r e t ;
r e t = e x e c l (”/ u s r / b i n / v i ” , ” v i ” , NULL) ;
i f (r e t == −1)

p e r r o r (” e x e c l ”) ;

Prof. Michele Loreti Process Management 182 / 218

Executing a new process

Standard C library provides a set of functions that can be used to execute
another process:

#i n c l u d e <un i s t d . h>
i n t e x e c l (con s t cha r ∗path , con s t cha r ∗ arg ,

. . .) ;

A call to execl () replaces the current process image with a new one by
loading into memory the program pointed at by path.

i n t r e t ;
r e t = e x e c l (”/ u s r / b i n / v i ” , ” v i ” , NULL) ;
i f (r e t == −1)

p e r r o r (” e x e c l ”) ;

Prof. Michele Loreti Process Management 182 / 218

Executing a new process

Standard C library provides a set of functions that can be used to execute
another process:

#i n c l u d e <un i s t d . h>
i n t e x e c l (con s t cha r ∗path , con s t cha r ∗ arg ,

. . .) ;

A call to execl () replaces the current process image with a new one by
loading into memory the program pointed at by path.

i n t r e t ;
r e t = e x e c l (”/ u s r / b i n / v i ” , ” v i ” , NULL) ;
i f (r e t == −1)

p e r r o r (” e x e c l ”) ;

Prof. Michele Loreti Process Management 182 / 218

Fork. . .

A new process running the same image as the current one can be created
via the fork () system call:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <un i s t d . h>

p i d t f o r k (vo i d) ;

A successful call to fork () creates a new process, identical in almost all
aspects to the invoking process.

Both processes continue to run, returning from fork () as if nothing special
had happened.

In the child, a successful invocation of fork () returns 0. In the parent,
fork () returns the pid of the child.

Prof. Michele Loreti Process Management 183 / 218

Fork. . .

A new process running the same image as the current one can be created
via the fork () system call:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <un i s t d . h>

p i d t f o r k (vo i d) ;

A successful call to fork () creates a new process, identical in almost all
aspects to the invoking process.

Both processes continue to run, returning from fork () as if nothing special
had happened.

In the child, a successful invocation of fork () returns 0. In the parent,
fork () returns the pid of the child.

Prof. Michele Loreti Process Management 183 / 218

Fork. . .

A new process running the same image as the current one can be created
via the fork () system call:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <un i s t d . h>

p i d t f o r k (vo i d) ;

A successful call to fork () creates a new process, identical in almost all
aspects to the invoking process.

Both processes continue to run, returning from fork () as if nothing special
had happened.

In the child, a successful invocation of fork () returns 0. In the parent,
fork () returns the pid of the child.

Prof. Michele Loreti Process Management 183 / 218

Fork. . .

A new process running the same image as the current one can be created
via the fork () system call:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <un i s t d . h>

p i d t f o r k (vo i d) ;

A successful call to fork () creates a new process, identical in almost all
aspects to the invoking process.

Both processes continue to run, returning from fork () as if nothing special
had happened.

In the child, a successful invocation of fork () returns 0. In the parent,
fork () returns the pid of the child.

Prof. Michele Loreti Process Management 183 / 218

Copy-on-write. . .

In early Unix systems, upon invocation, the kernel created copies of all
internal data structures, duplicated the process’s page table entries, and
then performed a page-by-page copy of the parent’s address space into the
child’s new address space.

This is time consuming!

Modern Unix systems have superior behaviour. Instead of a wholesale copy
of the parent’s address space, modern Unix systems such as Linux employ
copy-on-write (COW) pages.

Copies are performed only on write!

Prof. Michele Loreti Process Management 184 / 218

Copy-on-write. . .

In early Unix systems, upon invocation, the kernel created copies of all
internal data structures, duplicated the process’s page table entries, and
then performed a page-by-page copy of the parent’s address space into the
child’s new address space.

This is time consuming!

Modern Unix systems have superior behaviour. Instead of a wholesale copy
of the parent’s address space, modern Unix systems such as Linux employ
copy-on-write (COW) pages.

Copies are performed only on write!

Prof. Michele Loreti Process Management 184 / 218

Copy-on-write. . .

In early Unix systems, upon invocation, the kernel created copies of all
internal data structures, duplicated the process’s page table entries, and
then performed a page-by-page copy of the parent’s address space into the
child’s new address space.

This is time consuming!

Modern Unix systems have superior behaviour. Instead of a wholesale copy
of the parent’s address space, modern Unix systems such as Linux employ
copy-on-write (COW) pages.

Copies are performed only on write!

Prof. Michele Loreti Process Management 184 / 218

Copy-on-write. . .

In early Unix systems, upon invocation, the kernel created copies of all
internal data structures, duplicated the process’s page table entries, and
then performed a page-by-page copy of the parent’s address space into the
child’s new address space.

This is time consuming!

Modern Unix systems have superior behaviour. Instead of a wholesale copy
of the parent’s address space, modern Unix systems such as Linux employ
copy-on-write (COW) pages.

Copies are performed only on write!

Prof. Michele Loreti Process Management 184 / 218

Terminating a process

The standard function to terminate a process is:

#i n c l u d e < s t d l i b . h>

vo i d e x i t (i n t s t a t u s) ;

A call to exit () performs some basic shutdown steps, then instructs the
kernel to terminate the process.

The status parameter is used to denote the process’s exit status. Other
programs-as well as the user at the shell-can check this value.

The parent receives: status & 0377

Prof. Michele Loreti Process Management 185 / 218

Terminating a process

The standard function to terminate a process is:

#i n c l u d e < s t d l i b . h>

vo i d e x i t (i n t s t a t u s) ;

A call to exit () performs some basic shutdown steps, then instructs the
kernel to terminate the process.

The status parameter is used to denote the process’s exit status. Other
programs-as well as the user at the shell-can check this value.

The parent receives: status & 0377

Prof. Michele Loreti Process Management 185 / 218

Terminating a process

The standard function to terminate a process is:

#i n c l u d e < s t d l i b . h>

vo i d e x i t (i n t s t a t u s) ;

A call to exit () performs some basic shutdown steps, then instructs the
kernel to terminate the process.

The status parameter is used to denote the process’s exit status. Other
programs-as well as the user at the shell-can check this value.

The parent receives: status & 0377

Prof. Michele Loreti Process Management 185 / 218

Terminating a process

The standard function to terminate a process is:

#i n c l u d e < s t d l i b . h>

vo i d e x i t (i n t s t a t u s) ;

A call to exit () performs some basic shutdown steps, then instructs the
kernel to terminate the process.

The status parameter is used to denote the process’s exit status. Other
programs-as well as the user at the shell-can check this value.

The parent receives: status & 0377

Prof. Michele Loreti Process Management 185 / 218

Process shutdown steps

Before terminating the process, the C library performs the following
shutdown steps, in order:

1. Call any functions registered with atexit () or on exit (), in the reverse
order of their registration;

2. Flush all open standard I/O streams;

3. Remove any temporary files created with the tmpfile() function.

These steps finish all the work the process needs to do in user space, so
exit () invokes the system call exit () to let the kernel handle the rest of
the termination process.

Prof. Michele Loreti Process Management 186 / 218

Process shutdown steps

Before terminating the process, the C library performs the following
shutdown steps, in order:

1. Call any functions registered with atexit () or on exit (), in the reverse
order of their registration;

2. Flush all open standard I/O streams;

3. Remove any temporary files created with the tmpfile() function.

These steps finish all the work the process needs to do in user space, so
exit () invokes the system call exit () to let the kernel handle the rest of
the termination process.

Prof. Michele Loreti Process Management 186 / 218

Handling termination

Linux implements, the atexit () library call, used to register functions to be
invoked upon process termination:

#i n c l u d e < s t d l i b . h>

i n t a t e x i t (vo i d (∗ f u n c t i o n) (vo i d)) ;

A successful invocation of atexit () registers the given function to run
during normal process termination, that is, when a process is terminated
via either exit () or a return from main().

Prof. Michele Loreti Process Management 187 / 218

Handling termination

Linux implements, the atexit () library call, used to register functions to be
invoked upon process termination:

#i n c l u d e < s t d l i b . h>

i n t a t e x i t (vo i d (∗ f u n c t i o n) (vo i d)) ;

A successful invocation of atexit () registers the given function to run
during normal process termination, that is, when a process is terminated
via either exit () or a return from main().

Prof. Michele Loreti Process Management 187 / 218

Handling termination

Linux implements, the atexit () library call, used to register functions to be
invoked upon process termination:

#i n c l u d e < s t d l i b . h>

i n t a t e x i t (vo i d (∗ f u n c t i o n) (vo i d)) ;

A successful invocation of atexit () registers the given function to run
during normal process termination, that is, when a process is terminated
via either exit () or a return from main().

Prof. Michele Loreti Process Management 187 / 218

Handling termination

Linux also supports the on exit () library call. This is an alternative to atexit

defined in other standars:

#i n c l u d e < s t d l i b . h>

i n t o n e x i t (vo i d (∗ f u n c t i o n) (i n t , v o i d ∗) , v o i d ∗ arg) ;

This function works the same as atexit (), but the registered function’s
prototype is different:

vo i d my func t i on (i n t s t a t u s , v o i d ∗ arg) ;

Prof. Michele Loreti Process Management 188 / 218

Handling termination

Linux also supports the on exit () library call. This is an alternative to atexit

defined in other standars:

#i n c l u d e < s t d l i b . h>

i n t o n e x i t (vo i d (∗ f u n c t i o n) (i n t , v o i d ∗) , v o i d ∗ arg) ;

This function works the same as atexit (), but the registered function’s
prototype is different:

vo i d my func t i on (i n t s t a t u s , v o i d ∗ arg) ;

Prof. Michele Loreti Process Management 188 / 218

Handling termination

Linux also supports the on exit () library call. This is an alternative to atexit

defined in other standars:

#i n c l u d e < s t d l i b . h>

i n t o n e x i t (vo i d (∗ f u n c t i o n) (i n t , v o i d ∗) , v o i d ∗ arg) ;

This function works the same as atexit (), but the registered function’s
prototype is different:

vo i d my func t i on (i n t s t a t u s , v o i d ∗ arg) ;

Prof. Michele Loreti Process Management 188 / 218

Handling termination

Linux also supports the on exit () library call. This is an alternative to atexit

defined in other standars:

#i n c l u d e < s t d l i b . h>

i n t o n e x i t (vo i d (∗ f u n c t i o n) (i n t , v o i d ∗) , v o i d ∗ arg) ;

This function works the same as atexit (), but the registered function’s
prototype is different:

vo i d my func t i on (i n t s t a t u s , v o i d ∗ arg) ;

Prof. Michele Loreti Process Management 188 / 218

Waiting Child Termination. . .

When a child process terminates it is placed in a special state named
zombie.

In this state only minimal info about the process are maintained, and it
waits for its parent to inquire about its state.

Only after the parent obtains the information preserved about the
terminated child does the process formally exit and cease to exist even as
a zombie.

Prof. Michele Loreti Process Management 189 / 218

Waiting Child Termination. . .

When a child process terminates it is placed in a special state named
zombie.

In this state only minimal info about the process are maintained, and it
waits for its parent to inquire about its state.

Only after the parent obtains the information preserved about the
terminated child does the process formally exit and cease to exist even as
a zombie.

Prof. Michele Loreti Process Management 189 / 218

Waiting Child Termination. . .

When a child process terminates it is placed in a special state named
zombie.

In this state only minimal info about the process are maintained, and it
waits for its parent to inquire about its state.

Only after the parent obtains the information preserved about the
terminated child does the process formally exit and cease to exist even as
a zombie.

Prof. Michele Loreti Process Management 189 / 218

Waiting Child Termination. . .

The Linux kernel provides several interfaces for obtaining information
about terminated children.

The simplest is wait():

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <s y s / wa i t . h>

p i d t wa i t (i n t ∗ s t a t u s) ;

A call to wait() returns the pid of a terminated child or −1 on error. If no
child has terminated, the call blocks until a child terminates. If a child has
already terminated, the call returns immediately.

Prof. Michele Loreti Process Management 190 / 218

Waiting Child Termination. . .

The Linux kernel provides several interfaces for obtaining information
about terminated children.

The simplest is wait():

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <s y s / wa i t . h>

p i d t wa i t (i n t ∗ s t a t u s) ;

A call to wait() returns the pid of a terminated child or −1 on error. If no
child has terminated, the call blocks until a child terminates. If a child has
already terminated, the call returns immediately.

Prof. Michele Loreti Process Management 190 / 218

Waiting Child Termination. . .

The Linux kernel provides several interfaces for obtaining information
about terminated children.

The simplest is wait():

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <s y s / wa i t . h>

p i d t wa i t (i n t ∗ s t a t u s) ;

A call to wait() returns the pid of a terminated child or −1 on error. If no
child has terminated, the call blocks until a child terminates. If a child has
already terminated, the call returns immediately.

Prof. Michele Loreti Process Management 190 / 218

Waiting Child Termination. . .

On error, there are two possible errno values:

� ECHILD: The calling process does not have any children.

� EINTR: A signal was received while waiting, and the call returned early.

The status pointer contains additional information about the child. A
family of macros is provided for interpreting the parameter:

#i n c l u d e <s y s / wa i t . h>
i n t WIFEXITED (s t a t u s) ; // Proce s s t e rm ina t ed no rma l l y .
i n t WIFSIGNALED (s t a t u s) ; // S i g n a l caused t e rm i n a t i o n .
i n t WIFSTOPPED (s t a t u s) ; // Proce s s s topped .
i n t WIFCONTINUED (s t a t u s) ; // Proce s s con t i nued .
i n t WEXITSTATUS (s t a t u s) ; //Low 8− b i t s o f e x i t v a l u e .
i n t WTERMSIG (s t a t u s) ; // S i g n a l caused t e rm i n a t i o n .
i n t WSTOPSIG (s t a t u s) ;
i n t WCOREDUMP (s t a t u s) ;

Prof. Michele Loreti Process Management 191 / 218

Waiting Child Termination. . .

On error, there are two possible errno values:

� ECHILD: The calling process does not have any children.

� EINTR: A signal was received while waiting, and the call returned early.

The status pointer contains additional information about the child. A
family of macros is provided for interpreting the parameter:

#i n c l u d e <s y s / wa i t . h>
i n t WIFEXITED (s t a t u s) ; // Proce s s t e rm ina t ed no rma l l y .
i n t WIFSIGNALED (s t a t u s) ; // S i g n a l caused t e rm i n a t i o n .
i n t WIFSTOPPED (s t a t u s) ; // Proce s s s topped .
i n t WIFCONTINUED (s t a t u s) ; // Proce s s con t i nued .
i n t WEXITSTATUS (s t a t u s) ; //Low 8− b i t s o f e x i t v a l u e .
i n t WTERMSIG (s t a t u s) ; // S i g n a l caused t e rm i n a t i o n .
i n t WSTOPSIG (s t a t u s) ;
i n t WCOREDUMP (s t a t u s) ;

Prof. Michele Loreti Process Management 191 / 218

Waiting Child Termination. . .

i n t main (vo i d) {
i n t s t a t u s ; p i d t p i d ;
i f (! f o r k ()) r e t u r n 1 ;
p i d = wa i t (& s t a t u s) ;
i f (p i d == −1) p e r r o r (” wa i t ”) ;
p r i n t f (” p i d=%d\n” , p i d) ;
i f (WIFEXITED (s t a t u s))

p r i n t f (”Normal t e rm i n a t i o n wi th e x i t s t a t u s=%d\n” ,
WEXITSTATUS (s t a t u s)) ;

i f (WIFSIGNALED (s t a t u s))
p r i n t f (” K i l l e d by s i g n a l=%d%s \n” ,

WTERMSIG (s t a t u s) ,
WCOREDUMP (s t a t u s) ? ” (dumped co r e) ” : ””) ;

i f (WIFSTOPPED (s t a t u s))
p r i n t f (” Stopped by s i g n a l=%d\n” ,

WSTOPSIG (s t a t u s)) ;
i f (WIFCONTINUED (s t a t u s)) p r i n t f (” Cont inued \n”) ;
r e t u r n 0 ;

}
Prof. Michele Loreti Process Management 192 / 218

Wait for a specific process. . .

If you know the pid of the process you want to wait for, you can use the
waitpid () system call:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <s y s / wa i t . h>

p i d t wa i t p i d (p i d t p id , i n t ∗ s t a t u s , i n t o p t i o n s) ;

The pid parameter specifies exactly which process or processes to wait for:

� pid<−1: Wait for any child process whose process group ID is equal to
the absolute value of this value.

� pid=−1: Wait for any child process (same behaviour as wait())

� pid=0: Wait for any child process that belongs to the same process
group as the calling process.

� pid>0: Wait for any child process whose pid is exactly the value
provided.

Prof. Michele Loreti Process Management 193 / 218

Wait for a specific process. . .

If you know the pid of the process you want to wait for, you can use the
waitpid () system call:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <s y s / wa i t . h>

p i d t wa i t p i d (p i d t p id , i n t ∗ s t a t u s , i n t o p t i o n s) ;

The pid parameter specifies exactly which process or processes to wait for:

� pid<−1: Wait for any child process whose process group ID is equal to
the absolute value of this value.

� pid=−1: Wait for any child process (same behaviour as wait())

� pid=0: Wait for any child process that belongs to the same process
group as the calling process.

� pid>0: Wait for any child process whose pid is exactly the value
provided.

Prof. Michele Loreti Process Management 193 / 218

Wait for a specific process. . .

If you know the pid of the process you want to wait for, you can use the
waitpid () system call:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <s y s / wa i t . h>

p i d t wa i t p i d (p i d t p id , i n t ∗ s t a t u s , i n t o p t i o n s) ;

The pid parameter specifies exactly which process or processes to wait for:

� pid<−1: Wait for any child process whose process group ID is equal to
the absolute value of this value.

� pid=−1: Wait for any child process (same behaviour as wait())

� pid=0: Wait for any child process that belongs to the same process
group as the calling process.

� pid>0: Wait for any child process whose pid is exactly the value
provided.

Prof. Michele Loreti Process Management 193 / 218

Wait for a specific process. . .

If you know the pid of the process you want to wait for, you can use the
waitpid () system call:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <s y s / wa i t . h>

p i d t wa i t p i d (p i d t p id , i n t ∗ s t a t u s , i n t o p t i o n s) ;

The options parameter is a binary OR of zero or more of the following
options:

� WNOHANG: Do not block, but return immediately if no matching
child process has already terminated (or stopped or continued).

� WUNTRACED: the WIFSTOPPED bit in the returned status parameter is
set, even if the calling process is not tracing the child process.

� WCONTINUED: the WIFCONTINUED bit in the returned status
parameter is set even if the calling process is not tracing the child
process.

Prof. Michele Loreti Process Management 194 / 218

Wait for a specific process. . .

If you know the pid of the process you want to wait for, you can use the
waitpid () system call:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <s y s / wa i t . h>

p i d t wa i t p i d (p i d t p id , i n t ∗ s t a t u s , i n t o p t i o n s) ;

The options parameter is a binary OR of zero or more of the following
options:

� WNOHANG: Do not block, but return immediately if no matching
child process has already terminated (or stopped or continued).

� WUNTRACED: the WIFSTOPPED bit in the returned status parameter is
set, even if the calling process is not tracing the child process.

� WCONTINUED: the WIFCONTINUED bit in the returned status
parameter is set even if the calling process is not tracing the child
process.

Prof. Michele Loreti Process Management 194 / 218

Wait for a specific process. . .

If you know the pid of the process you want to wait for, you can use the
waitpid () system call:

#i n c l u d e <s y s / t yp e s . h>
#i n c l u d e <s y s / wa i t . h>

p i d t wa i t p i d (p i d t p id , i n t ∗ s t a t u s , i n t o p t i o n s) ;

The options parameter is a binary OR of zero or more of the following
options:

� WNOHANG: Do not block, but return immediately if no matching
child process has already terminated (or stopped or continued).

� WUNTRACED: the WIFSTOPPED bit in the returned status parameter is
set, even if the calling process is not tracing the child process.

� WCONTINUED: the WIFCONTINUED bit in the returned status
parameter is set even if the calling process is not tracing the child
process.

Prof. Michele Loreti Process Management 194 / 218

Wait for a specific process. . .

Example:

i n t s t a t u s ; p i d t p i d ;
p i d = wa i t p i d (1742 , &s t a t u s , WNOHANG) ;

i f (p i d == −1)
p e r r o r (” wa i t p i d ”) ;

e l s e {
p r i n t f (” p i d=%d\n” , p i d) ;
i f (WIFEXITED (s t a t u s))

p r i n t f (”Normal t e rm i n a t i o n wi th e x i t s t a t u s=%d\n” ,
WEXITSTATUS (s t a t u s)) ;

i f (WIFSIGNALED (s t a t u s))
p r i n t f (” K i l l e d by s i g n a l=%d%s \n” ,

WTERMSIG (s t a t u s) ,
WCOREDUMP (s t a t u s) ? ” (dumped co r e) ” : ””) ;

}

Prof. Michele Loreti Process Management 195 / 218

More Waiting Versatility

XSI extension to POSIX defines, and Linux provides, waitid ():

#i n c l u d e <s y s / wa i t . h>

i n t w a i t i d (i d t y p e t i d t ype ,
i d t id ,
s i g i n f o t ∗ i n f op ,
i n t o p t i o n s) ;

The idtype and id arguments specify which children to wait for.

idtype may be one of the following values:

� P PID: Wait for a child whose pid matches id.

� P GID: Wait for a child whose process group ID matches id.

� P ALL: Wait for any child; id is ignored.

Prof. Michele Loreti Process Management 196 / 218

More Waiting Versatility

XSI extension to POSIX defines, and Linux provides, waitid ():

#i n c l u d e <s y s / wa i t . h>

i n t w a i t i d (i d t y p e t i d t ype ,
i d t id ,
s i g i n f o t ∗ i n f op ,
i n t o p t i o n s) ;

The idtype and id arguments specify which children to wait for.

idtype may be one of the following values:

� P PID: Wait for a child whose pid matches id.

� P GID: Wait for a child whose process group ID matches id.

� P ALL: Wait for any child; id is ignored.

Prof. Michele Loreti Process Management 196 / 218

More Waiting Versatility

XSI extension to POSIX defines, and Linux provides, waitid ():

#i n c l u d e <s y s / wa i t . h>

i n t w a i t i d (i d t y p e t i d t ype ,
i d t id ,
s i g i n f o t ∗ i n f op ,
i n t o p t i o n s) ;

The idtype and id arguments specify which children to wait for.

idtype may be one of the following values:

� P PID: Wait for a child whose pid matches id.

� P GID: Wait for a child whose process group ID matches id.

� P ALL: Wait for any child; id is ignored.

Prof. Michele Loreti Process Management 196 / 218

More Waiting Versatility

The options parameter is a binary OR of one or more of the following
values:

� WEXITED: The call will wait for children that have terminated.

� WSTOPPED: The call will wait for children that have stopped
execution in response to receipt of a signal.

� WCONTINUED: The call will wait for children that have continued
execution in response to receipt of a signal.

� WNOHANG: The call will never block, but will return immediately if no
matching child process has already terminated (or stopped, or
continued).

� WNOWAIT: The call will not remove the matching process from the
zombie state. The process may be waited upon in the future.

Prof. Michele Loreti Process Management 197 / 218

More Waiting Versatility

Upon successfully waiting for a child, waitid () fills in the infop parameter,
which must point to a valid siginfo t type.

The exact layout of the siginfo t structure is implementation-specific, but
a handful of fields are valid after a call to waitid ().

A successful invocation will ensure that the following fields are filled in:

� si pid : The child’s pid.

� si uid : The child’s uid.

� si code : Set to one of CLD EXITED, CLD KILLED, CLD STOPPED, or
CLD CONTINUED in response to the child terminating.

� si signo : Set to SIGCHLD.

� si status : If si code is CLD EXITED, this field is the exit code of the
child process. Otherwise, this field is the number of the signal
delivered to the child that caused the state change.

Prof. Michele Loreti Process Management 198 / 218

More Waiting Versatility

Upon successfully waiting for a child, waitid () fills in the infop parameter,
which must point to a valid siginfo t type.

The exact layout of the siginfo t structure is implementation-specific, but
a handful of fields are valid after a call to waitid ().

A successful invocation will ensure that the following fields are filled in:

� si pid : The child’s pid.

� si uid : The child’s uid.

� si code : Set to one of CLD EXITED, CLD KILLED, CLD STOPPED, or
CLD CONTINUED in response to the child terminating.

� si signo : Set to SIGCHLD.

� si status : If si code is CLD EXITED, this field is the exit code of the
child process. Otherwise, this field is the number of the signal
delivered to the child that caused the state change.

Prof. Michele Loreti Process Management 198 / 218

More Waiting Versatility

Upon successfully waiting for a child, waitid () fills in the infop parameter,
which must point to a valid siginfo t type.

The exact layout of the siginfo t structure is implementation-specific, but
a handful of fields are valid after a call to waitid ().

A successful invocation will ensure that the following fields are filled in:

� si pid : The child’s pid.

� si uid : The child’s uid.

� si code : Set to one of CLD EXITED, CLD KILLED, CLD STOPPED, or
CLD CONTINUED in response to the child terminating.

� si signo : Set to SIGCHLD.

� si status : If si code is CLD EXITED, this field is the exit code of the
child process. Otherwise, this field is the number of the signal
delivered to the child that caused the state change.

Prof. Michele Loreti Process Management 198 / 218

Launching and waiting new processes

Both ANSI C and POSIX define an interface that couples spawning a new
process and waiting for its termination.

If a process is spawning a child only to immediately wait for its
termination, it makes sense to use this interface:

#de f i n e XOPEN SOURCE /∗ i f we want WEXITSTATUS, e t c . ∗/
#i n c l u d e < s t d l i b . h>

i n t system (cons t cha r ∗command) ;

The system() function is so named because the synchronous process
invocation is called shelling out to the system.

It is common to use system() to run a simple utility or shell script, often
with the explicit goal of simply obtaining its return value.

Prof. Michele Loreti Process Management 199 / 218

Launching and waiting new processes

Both ANSI C and POSIX define an interface that couples spawning a new
process and waiting for its termination.

If a process is spawning a child only to immediately wait for its
termination, it makes sense to use this interface:

#de f i n e XOPEN SOURCE /∗ i f we want WEXITSTATUS, e t c . ∗/
#i n c l u d e < s t d l i b . h>

i n t system (cons t cha r ∗command) ;

The system() function is so named because the synchronous process
invocation is called shelling out to the system.

It is common to use system() to run a simple utility or shell script, often
with the explicit goal of simply obtaining its return value.

Prof. Michele Loreti Process Management 199 / 218

Launching and waiting new processes

Both ANSI C and POSIX define an interface that couples spawning a new
process and waiting for its termination.

If a process is spawning a child only to immediately wait for its
termination, it makes sense to use this interface:

#de f i n e XOPEN SOURCE /∗ i f we want WEXITSTATUS, e t c . ∗/
#i n c l u d e < s t d l i b . h>

i n t system (cons t cha r ∗command) ;

The system() function is so named because the synchronous process
invocation is called shelling out to the system.

It is common to use system() to run a simple utility or shell script, often
with the explicit goal of simply obtaining its return value.

Prof. Michele Loreti Process Management 199 / 218

To be continued. . .

Prof. Michele Loreti Process Management 200 / 218

Progetto Appelli Giugno/Luglio

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Progetto Appelli Giugno/Luglio 201 / 218

Progetto Sessioni Giugno/Luglio. . .

Obiettivo: Sviluppare una applicazione di sistema Unix/Linux chiamata
swordx che sia in grado di leggere un insieme di file (di testo) da una o più
sorgenti e che produca in output un tile di testo contenente la lista delle
parole che occorrono nei file letti con la relativa occorrenza.

Regole:

1. Il progetto dovr essere consegnato in un archivio . tgz contenente,
oltre al codice, una relazione descrittiva del lavoro svolto;

2. Il progetto può essere svolto in gruppo (di al più tre persone);

3. La valutazione del progetto terrà conto di:
� Corretto funzionamento;
� Organizzazione del codice;
� Conoscenza da parte di tutti i membri del gruppo.

Date di consegna: 18/06/2018, 02/07/2018, 16/07/2018.

Prof. Michele Loreti Progetto Appelli Giugno/Luglio 202 / 218

Progetto Sessioni Giugno/Luglio. . .

Obiettivo: Sviluppare una applicazione di sistema Unix/Linux chiamata
swordx che sia in grado di leggere un insieme di file (di testo) da una o più
sorgenti e che produca in output un tile di testo contenente la lista delle
parole che occorrono nei file letti con la relativa occorrenza.

Regole:

1. Il progetto dovr essere consegnato in un archivio . tgz contenente,
oltre al codice, una relazione descrittiva del lavoro svolto;

2. Il progetto può essere svolto in gruppo (di al più tre persone);

3. La valutazione del progetto terrà conto di:
� Corretto funzionamento;
� Organizzazione del codice;
� Conoscenza da parte di tutti i membri del gruppo.

Date di consegna: 18/06/2018, 02/07/2018, 16/07/2018.

Prof. Michele Loreti Progetto Appelli Giugno/Luglio 202 / 218

Progetto Sessioni Giugno/Luglio. . .

Obiettivo: Sviluppare una applicazione di sistema Unix/Linux chiamata
swordx che sia in grado di leggere un insieme di file (di testo) da una o più
sorgenti e che produca in output un tile di testo contenente la lista delle
parole che occorrono nei file letti con la relativa occorrenza.

Regole:

1. Il progetto dovr essere consegnato in un archivio . tgz contenente,
oltre al codice, una relazione descrittiva del lavoro svolto;

2. Il progetto può essere svolto in gruppo (di al più tre persone);

3. La valutazione del progetto terrà conto di:
� Corretto funzionamento;
� Organizzazione del codice;
� Conoscenza da parte di tutti i membri del gruppo.

Date di consegna: 18/06/2018, 02/07/2018, 16/07/2018.

Prof. Michele Loreti Progetto Appelli Giugno/Luglio 202 / 218

To be continued. . .

Prof. Michele Loreti Progetto Appelli Giugno/Luglio 203 / 218

Threads

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Threads 204 / 218

Threading. . .

Threading is the creation and management of multiple units of execution
within a single process.

Threading is a significant source of programming error, through the
introduction of data races and deadlocks.

The topic of threading can—and indeed does—fill whole books. Those
works tend to focus on the myriad interfaces in a particular threading
library.

While we will focus on basics of the Linux threading API.

Prof. Michele Loreti Threads 205 / 218

Threading. . .

Threading is the creation and management of multiple units of execution
within a single process.

Threading is a significant source of programming error, through the
introduction of data races and deadlocks.

The topic of threading can—and indeed does—fill whole books. Those
works tend to focus on the myriad interfaces in a particular threading
library.

While we will focus on basics of the Linux threading API.

Prof. Michele Loreti Threads 205 / 218

Threading. . .

Threading is the creation and management of multiple units of execution
within a single process.

Threading is a significant source of programming error, through the
introduction of data races and deadlocks.

The topic of threading can—and indeed does—fill whole books. Those
works tend to focus on the myriad interfaces in a particular threading
library.

While we will focus on basics of the Linux threading API.

Prof. Michele Loreti Threads 205 / 218

Threading. . .

Threading is the creation and management of multiple units of execution
within a single process.

Threading is a significant source of programming error, through the
introduction of data races and deadlocks.

The topic of threading can—and indeed does—fill whole books. Those
works tend to focus on the myriad interfaces in a particular threading
library.

While we will focus on basics of the Linux threading API.

Prof. Michele Loreti Threads 205 / 218

Binaries, Processes and Threads. . .

Binaries are dormant programs residing on a storage medium, compiled to
a format accessible by a given operating system and machine architecture,
ready to execute but not yet in motion.

Processes are the operating system abstraction representing those binaries
in action: the loaded binary, virtualised memory, kernel resources such as
open files, an associated user, and so on.

Threads are the unit of execution within a process: a virtualised processor,
a stack, and program state.

Processes are running binaries and threads are the smallest unit of
execution schedulable by an operating system’s process scheduler.

Prof. Michele Loreti Threads 206 / 218

Binaries, Processes and Threads. . .

Binaries are dormant programs residing on a storage medium, compiled to
a format accessible by a given operating system and machine architecture,
ready to execute but not yet in motion.

Processes are the operating system abstraction representing those binaries
in action: the loaded binary, virtualised memory, kernel resources such as
open files, an associated user, and so on.

Threads are the unit of execution within a process: a virtualised processor,
a stack, and program state.

Processes are running binaries and threads are the smallest unit of
execution schedulable by an operating system’s process scheduler.

Prof. Michele Loreti Threads 206 / 218

Binaries, Processes and Threads. . .

Binaries are dormant programs residing on a storage medium, compiled to
a format accessible by a given operating system and machine architecture,
ready to execute but not yet in motion.

Processes are the operating system abstraction representing those binaries
in action: the loaded binary, virtualised memory, kernel resources such as
open files, an associated user, and so on.

Threads are the unit of execution within a process: a virtualised processor,
a stack, and program state.

Processes are running binaries and threads are the smallest unit of
execution schedulable by an operating system’s process scheduler.

Prof. Michele Loreti Threads 206 / 218

Binaries, Processes and Threads. . .

Binaries are dormant programs residing on a storage medium, compiled to
a format accessible by a given operating system and machine architecture,
ready to execute but not yet in motion.

Processes are the operating system abstraction representing those binaries
in action: the loaded binary, virtualised memory, kernel resources such as
open files, an associated user, and so on.

Threads are the unit of execution within a process: a virtualised processor,
a stack, and program state.

Processes are running binaries and threads are the smallest unit of
execution schedulable by an operating system’s process scheduler.

Prof. Michele Loreti Threads 206 / 218

Threading. . .

A process contains one or more threads.

If a process contains but one thread, there is only a single unit of
execution in the process and only one thing going on at a time. We call
such processes single threaded.

If a process contains more than one thread, then there is more than one
thing going on at once. We call such processes multithreaded.

Prof. Michele Loreti Threads 207 / 218

Threading. . .

A process contains one or more threads.

If a process contains but one thread, there is only a single unit of
execution in the process and only one thing going on at a time. We call
such processes single threaded.

If a process contains more than one thread, then there is more than one
thing going on at once. We call such processes multithreaded.

Prof. Michele Loreti Threads 207 / 218

Threading. . .

A process contains one or more threads.

If a process contains but one thread, there is only a single unit of
execution in the process and only one thing going on at a time. We call
such processes single threaded.

If a process contains more than one thread, then there is more than one
thing going on at once. We call such processes multithreaded.

Prof. Michele Loreti Threads 207 / 218

Threading. . .

Modern operating systems provide two fundamental virtualised
abstractions to user space:

� virtual memory

� and a virtualised processor.

Each running process has the illusion that it alone consumes the
machine’s resources!

Virtualised memory is associated with the process and not the thread.
Thus, each process has a unique view of memory that is shared by
all threads in that process.

Prof. Michele Loreti Threads 208 / 218

Threading. . .

Modern operating systems provide two fundamental virtualised
abstractions to user space:

� virtual memory

� and a virtualised processor.

Each running process has the illusion that it alone consumes the
machine’s resources!

Virtualised memory is associated with the process and not the thread.
Thus, each process has a unique view of memory that is shared by
all threads in that process.

Prof. Michele Loreti Threads 208 / 218

Threading. . .

Modern operating systems provide two fundamental virtualised
abstractions to user space:

� virtual memory

� and a virtualised processor.

Each running process has the illusion that it alone consumes the
machine’s resources!

Virtualised memory is associated with the process and not the thread.
Thus, each process has a unique view of memory that is shared by
all threads in that process.

Prof. Michele Loreti Threads 208 / 218

Multithreading. . .

There are six primary benefits to multithreading:

1. Programming abstraction

2. Parallelism

3. Improving responsiveness

4. Blocking I/O

5. Context switching

6. Memory savings

Prof. Michele Loreti Threads 209 / 218

Multithreading. . .

There are six primary benefits to multithreading:

1. Programming abstraction

2. Parallelism

3. Improving responsiveness

4. Blocking I/O

5. Context switching

6. Memory savings

Prof. Michele Loreti Threads 209 / 218

Multithreading. . .

There are six primary benefits to multithreading:

1. Programming abstraction

2. Parallelism

3. Improving responsiveness

4. Blocking I/O

5. Context switching

6. Memory savings

Prof. Michele Loreti Threads 209 / 218

Multithreading. . .

There are six primary benefits to multithreading:

1. Programming abstraction

2. Parallelism

3. Improving responsiveness

4. Blocking I/O

5. Context switching

6. Memory savings

Prof. Michele Loreti Threads 209 / 218

Multithreading. . .

There are six primary benefits to multithreading:

1. Programming abstraction

2. Parallelism

3. Improving responsiveness

4. Blocking I/O

5. Context switching

6. Memory savings

Prof. Michele Loreti Threads 209 / 218

Multithreading. . .

There are six primary benefits to multithreading:

1. Programming abstraction

2. Parallelism

3. Improving responsiveness

4. Blocking I/O

5. Context switching

6. Memory savings

Prof. Michele Loreti Threads 209 / 218

Multithreading. . .

There are six primary benefits to multithreading:

1. Programming abstraction

2. Parallelism

3. Improving responsiveness

4. Blocking I/O

5. Context switching

6. Memory savings

Prof. Michele Loreti Threads 209 / 218

Threading Models

Kernel-level threading: This is the simplest model, where kernel provides
native support for threads, and each of those kernel threads translates
directly to the user-space concept of a thread (1-process, 1-thread).

User-level threading: in this model user space is the key to the system’s
threading support, as it implements the concept of a thread. A process
with N threads will map to a single kernel process (1-process, N-threads).

Hybrid Threading: A mix of Kernel-level and User-level (M-processes,
N-threads).

Prof. Michele Loreti Threads 210 / 218

Threading Models

Kernel-level threading: This is the simplest model, where kernel provides
native support for threads, and each of those kernel threads translates
directly to the user-space concept of a thread (1-process, 1-thread).

User-level threading: in this model user space is the key to the system’s
threading support, as it implements the concept of a thread. A process
with N threads will map to a single kernel process (1-process, N-threads).

Hybrid Threading: A mix of Kernel-level and User-level (M-processes,
N-threads).

Prof. Michele Loreti Threads 210 / 218

Threading Models

Kernel-level threading: This is the simplest model, where kernel provides
native support for threads, and each of those kernel threads translates
directly to the user-space concept of a thread (1-process, 1-thread).

User-level threading: in this model user space is the key to the system’s
threading support, as it implements the concept of a thread. A process
with N threads will map to a single kernel process (1-process, N-threads).

Hybrid Threading: A mix of Kernel-level and User-level (M-processes,
N-threads).

Prof. Michele Loreti Threads 210 / 218

Threading Models

Kernel-level threading: This is the simplest model, where kernel provides
native support for threads, and each of those kernel threads translates
directly to the user-space concept of a thread (1-process, 1-thread).

User-level threading: in this model user space is the key to the system’s
threading support, as it implements the concept of a thread. A process
with N threads will map to a single kernel process (1-process, N-threads).

Hybrid Threading: A mix of Kernel-level and User-level (M-processes,
N-threads).

Prof. Michele Loreti Threads 210 / 218

Concurrency, Parallelism, and Races

Threads create two related but distinct phenomena: concurrency and
parallelism.

Concurrency is the ability of two or more threads to execute in overlapping
time periods.

Parallelism is the ability to execute two or more threads simultaneously.

Prof. Michele Loreti Threads 211 / 218

Concurrency, Parallelism, and Races

Threads create two related but distinct phenomena: concurrency and
parallelism.

Concurrency is the ability of two or more threads to execute in overlapping
time periods.

Parallelism is the ability to execute two or more threads simultaneously.

Prof. Michele Loreti Threads 211 / 218

Concurrency, Parallelism, and Races

Threads create two related but distinct phenomena: concurrency and
parallelism.

Concurrency is the ability of two or more threads to execute in overlapping
time periods.

Parallelism is the ability to execute two or more threads simultaneously.

Prof. Michele Loreti Threads 211 / 218

Thread Race

Consider the following C function:

i n t withdraw (s t r u c t account ∗ account , i n t amount) {
con s t i n t ba l ance = account−>ba l ance ;

i f (ba l anc e < amount)
r e t u r n −1;

account−>ba l ance = ba l ance − amount ;

d i sbu r s e money (amount) ;

r e t u r n 0 ;
}

What can happen if two processes execute the code above at the
concurrently?

Prof. Michele Loreti Threads 212 / 218

Thread Race

Consider the following C function:

i n t withdraw (s t r u c t account ∗ account , i n t amount) {
con s t i n t ba l ance = account−>ba l ance ;

i f (ba l anc e < amount)
r e t u r n −1;

account−>ba l ance = ba l ance − amount ;

d i sbu r s e money (amount) ;

r e t u r n 0 ;
}

What can happen if two processes execute the code above at the
concurrently?

Prof. Michele Loreti Threads 212 / 218

Thread Race

Consider the following C function:

i n t withdraw (s t r u c t account ∗ account , i n t amount) {
con s t i n t ba l ance = account−>ba l ance ;

i f (ba l anc e < amount)
r e t u r n −1;

account−>ba l ance = ba l ance − amount ;

d i sbu r s e money (amount) ;

r e t u r n 0 ;
}

What can happen if two processes execute the code above at the
concurrently?

Prof. Michele Loreti Threads 212 / 218

Thread Race

Consider the following C instruction:

x++; //x i s an i n t e g e r .

Question: can the statement above be executed concurrently?

C compiler transforms the code above in:

load x into register

add 1 to register

store register in x

Prof. Michele Loreti Threads 213 / 218

Thread Race

Consider the following C instruction:

x++; //x i s an i n t e g e r .

Question: can the statement above be executed concurrently?

C compiler transforms the code above in:

load x into register

add 1 to register

store register in x

Prof. Michele Loreti Threads 213 / 218

Thread Race

Consider the following C instruction:

x++; //x i s an i n t e g e r .

Question: can the statement above be executed concurrently?

C compiler transforms the code above in:

load x into register

add 1 to register

store register in x

Prof. Michele Loreti Threads 213 / 218

Thread Race
We assume x=0

Case 1:

(Th1) load x into register

(Th1) add 1 to register

(Th1) store register in x

(Th2) load x into register

(Th2) add 1 to register

(Th2) store register in x

Result: x=2

Prof. Michele Loreti Threads 214 / 218

Thread Race
We assume x=0

Case 1:

(Th1) load x into register

(Th1) add 1 to register

(Th1) store register in x

(Th2) load x into register

(Th2) add 1 to register

(Th2) store register in x

Result: x=2

Prof. Michele Loreti Threads 214 / 218

Thread Race
We assume x=0

Case 2:

(Th2) load x into register

(Th2) add 1 to register

(Th2) store register in x

(Th1) load x into register

(Th1) add 1 to register

(Th1) store register in x

Result: x=2

Prof. Michele Loreti Threads 215 / 218

Thread Race
We assume x=0

Case 2:

(Th2) load x into register

(Th2) add 1 to register

(Th2) store register in x

(Th1) load x into register

(Th1) add 1 to register

(Th1) store register in x

Result: x=2

Prof. Michele Loreti Threads 215 / 218

Thread Race
We assume x=0

Case 3:

(Th1) load x into register

(Th2) load x into register

(Th2) add 1 to register

(Th1) add 1 to register

(Th1) store register in x

(Th2) store register in x

Result: x=1

Prof. Michele Loreti Threads 216 / 218

Thread Race
We assume x=0

Case 3:

(Th1) load x into register

(Th2) load x into register

(Th2) add 1 to register

(Th1) add 1 to register

(Th1) store register in x

(Th2) store register in x

Result: x=1

Prof. Michele Loreti Threads 216 / 218

Thread Synchronisation

The fundamental source of races is that critical regions are a window
during which correct program behaviour requires that threads do not
interleave execution.

To prevent race conditions, then, the programmer needs to synchronise
access to that window, ensuring mutually exclusive access to the critical
region.

An operation (or set of operations) is atomic if it is indivisible, unable to
be interleaved with other operations.

To the rest of the system, an atomic operation (or operations) appears to
occur instantaneously. And that’s the problem with critical regions: they
are not indivisible, they don’t occur instantaneously, they aren’t atomic

Prof. Michele Loreti Threads 217 / 218

Thread Synchronisation

The fundamental source of races is that critical regions are a window
during which correct program behaviour requires that threads do not
interleave execution.

To prevent race conditions, then, the programmer needs to synchronise
access to that window, ensuring mutually exclusive access to the critical
region.

An operation (or set of operations) is atomic if it is indivisible, unable to
be interleaved with other operations.

To the rest of the system, an atomic operation (or operations) appears to
occur instantaneously. And that’s the problem with critical regions: they
are not indivisible, they don’t occur instantaneously, they aren’t atomic

Prof. Michele Loreti Threads 217 / 218

Thread Synchronisation

The fundamental source of races is that critical regions are a window
during which correct program behaviour requires that threads do not
interleave execution.

To prevent race conditions, then, the programmer needs to synchronise
access to that window, ensuring mutually exclusive access to the critical
region.

An operation (or set of operations) is atomic if it is indivisible, unable to
be interleaved with other operations.

To the rest of the system, an atomic operation (or operations) appears to
occur instantaneously. And that’s the problem with critical regions: they
are not indivisible, they don’t occur instantaneously, they aren’t atomic

Prof. Michele Loreti Threads 217 / 218

Thread Synchronisation

The fundamental source of races is that critical regions are a window
during which correct program behaviour requires that threads do not
interleave execution.

To prevent race conditions, then, the programmer needs to synchronise
access to that window, ensuring mutually exclusive access to the critical
region.

An operation (or set of operations) is atomic if it is indivisible, unable to
be interleaved with other operations.

To the rest of the system, an atomic operation (or operations) appears to
occur instantaneously. And that’s the problem with critical regions: they
are not indivisible, they don’t occur instantaneously, they aren’t atomic

Prof. Michele Loreti Threads 217 / 218

To be continued. . .

Prof. Michele Loreti Threads 218 / 218

