
Thread Libraries: POSIX threads (pthreads)

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 219 / 246

Thread libraries. . .

There are two main thread libraries:

� POSIX threads, pthreads;

� Solaris threads, sthreads.

Both contain code for:

� creating and destroying threads

� passing messages and data between threads

� scheduling thread execution

� saving and restoring thread contexts

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 220 / 246

Thread libraries. . .

There are two main thread libraries:

� POSIX threads, pthreads;

� Solaris threads, sthreads.

Both contain code for:

� creating and destroying threads

� passing messages and data between threads

� scheduling thread execution

� saving and restoring thread contexts

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 220 / 246

Thread libraries. . .

There are two main thread libraries:

� POSIX threads, pthreads;

� Solaris threads, sthreads.

Both contain code for:

� creating and destroying threads

� passing messages and data between threads

� scheduling thread execution

� saving and restoring thread contexts

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 220 / 246

POSIX Threads Library
Creating a new thread. . .

A new thread is created via the function pthread create ():

#i n c l u d e <p t h r e a d . h>

i n t p t h r e a d c r e a t e (
p t h r e a d t ∗ t i d ,
c o n s t p t h r e a d a t t r t ∗ t a t t r ,
v o i d ∗(∗ s t a r t r o u t i n e) (v o i d ∗) ,
v o i d ∗ a r g

) ;

� tid stores the thread ID;
� tattr is used to change the default thread attributes of the newly

created thread (often is NULL);
� start routine is the function executed by the new thread;
� arg refers to the arguments passed to start routine ;
� pthread create returns zero when it completes successfully.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 221 / 246

POSIX Threads Library
Creating a new thread. . .

A new thread is created via the function pthread create ():

#i n c l u d e <p t h r e a d . h>

i n t p t h r e a d c r e a t e (
p t h r e a d t ∗ t i d ,
c o n s t p t h r e a d a t t r t ∗ t a t t r ,
v o i d ∗(∗ s t a r t r o u t i n e) (v o i d ∗) ,
v o i d ∗ a r g

) ;

� tid stores the thread ID;
� tattr is used to change the default thread attributes of the newly

created thread (often is NULL);
� start routine is the function executed by the new thread;
� arg refers to the arguments passed to start routine ;
� pthread create returns zero when it completes successfully.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 221 / 246

POSIX Threads Library
Wait for Thread Termination. . .

To wait termination of a thread, functions pthread join and pthread join

can be used:

#i n c l u d e <p t h r e a d . h>

i n t p t h r e a d j o i n (t h r e a d t t i d , v o i d ∗∗ s t a t u s) ;

The specified thread must be in the current process and must not be
detached (see below).

When status is not NULL, it points to a location that is set to the exit
status of the terminated thread.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 222 / 246

POSIX Threads Library
Wait for Thread Termination. . .

To wait termination of a thread, functions pthread join and pthread join

can be used:

#i n c l u d e <p t h r e a d . h>

i n t p t h r e a d j o i n (t h r e a d t t i d , v o i d ∗∗ s t a t u s) ;

The specified thread must be in the current process and must not be
detached (see below).

When status is not NULL, it points to a location that is set to the exit
status of the terminated thread.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 222 / 246

POSIX Threads Library
Wait for Thread Termination. . .

To wait termination of a thread, functions pthread join and pthread join

can be used:

#i n c l u d e <p t h r e a d . h>

i n t p t h r e a d j o i n (t h r e a d t t i d , v o i d ∗∗ s t a t u s) ;

The specified thread must be in the current process and must not be
detached (see below).

When status is not NULL, it points to a location that is set to the exit
status of the terminated thread.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 222 / 246

POSIX Threads Library
Thread specific storage. . .

Threads can store private values in thread-specific data (TSD).

In this area, each thread-specific data item is associated with a key that is
global to all threads in the process. Using the key, a thread can access a
pointer (void ∗) that is maintained per-thread.

Function pthread keycreate is called once for each key before the key is used:

i n t p t h r e a d k e y c r e a t e (
p t h r e a d k e y t ∗key ,
v o i d (∗ d e s t r u c t o r) (v o i d ∗)

) ;

Zero is returned after the operations has been completed successfully. Any
other returned value indicates that an error occurred.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 223 / 246

POSIX Threads Library
Thread specific storage. . .

Threads can store private values in thread-specific data (TSD).

In this area, each thread-specific data item is associated with a key that is
global to all threads in the process. Using the key, a thread can access a
pointer (void ∗) that is maintained per-thread.

Function pthread keycreate is called once for each key before the key is used:

i n t p t h r e a d k e y c r e a t e (
p t h r e a d k e y t ∗key ,
v o i d (∗ d e s t r u c t o r) (v o i d ∗)

) ;

Zero is returned after the operations has been completed successfully. Any
other returned value indicates that an error occurred.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 223 / 246

POSIX Threads Library
Thread specific storage. . .

Threads can store private values in thread-specific data (TSD).

In this area, each thread-specific data item is associated with a key that is
global to all threads in the process. Using the key, a thread can access a
pointer (void ∗) that is maintained per-thread.

Function pthread keycreate is called once for each key before the key is used:

i n t p t h r e a d k e y c r e a t e (
p t h r e a d k e y t ∗key ,
v o i d (∗ d e s t r u c t o r) (v o i d ∗)

) ;

Zero is returned after the operations has been completed successfully. Any
other returned value indicates that an error occurred.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 223 / 246

POSIX Threads Library
Thread specific storage. . .

Threads can store private values in thread-specific data (TSD).

In this area, each thread-specific data item is associated with a key that is
global to all threads in the process. Using the key, a thread can access a
pointer (void ∗) that is maintained per-thread.

Function pthread keycreate is called once for each key before the key is used:

i n t p t h r e a d k e y c r e a t e (
p t h r e a d k e y t ∗key ,
v o i d (∗ d e s t r u c t o r) (v o i d ∗)

) ;

Zero is returned after the operations has been completed successfully. Any
other returned value indicates that an error occurred.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 223 / 246

POSIX Threads Library
Thread specific storage. . .

The following functions can be used to manage values in the TSD:

i n t p t h r e a d k e y d e l e t e (p t h r e a d k e y t key) ;

v o i d ∗ p t h r e a d g e t s p e c i f i c (p t h r e a d k e y t key) ;

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 224 / 246

Example: Usage of TSD

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 225 / 246

POSIX Threads Library
Thread identifier. . .

The function pthread self () can be called to return the ID of the calling
thread:

p t h r e a d t p t h r e a d s e l f (v o i d) ;

Function pthread equal () can be used to compare two thread ids:

i n t p t h r e a d e q u a l (p t h r e a d t t i d 1 , p t h r e a d t t i d 2) ;

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 226 / 246

POSIX Threads Library
Thread identifier. . .

The function pthread self () can be called to return the ID of the calling
thread:

p t h r e a d t p t h r e a d s e l f (v o i d) ;

Function pthread equal () can be used to compare two thread ids:

i n t p t h r e a d e q u a l (p t h r e a d t t i d 1 , p t h r e a d t t i d 2) ;

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 226 / 246

POSIX Threads Library
Terminating threads. . .

A thread can terminate its execution in the following ways:

� By returning from its first (outermost) procedure, the threads start
routine;

� By calling pthread exit (), supplying an exit status;

� By termination with POSIX cancel functions pthread cancel ().

v o i d p t h r e a d e x i t (v o i d ∗ s t a t u s)

i n t p t h r e a d c a n c e l (p t h r e a d t t h r e a d)

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 227 / 246

POSIX Threads Library
Terminating threads. . .

A thread can terminate its execution in the following ways:

� By returning from its first (outermost) procedure, the threads start
routine;

� By calling pthread exit (), supplying an exit status;

� By termination with POSIX cancel functions pthread cancel ().

v o i d p t h r e a d e x i t (v o i d ∗ s t a t u s)

i n t p t h r e a d c a n c e l (p t h r e a d t t h r e a d)

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 227 / 246

Thread Synchronisation. . .

We have a race when multiple threads operate on the same set of data.

To avoid confusion mechanisms to synchronise threads interaction are
needed.

There are a few possible methods of synchronising threads:

� Mutual Exclusion (Mutex) Locks

� Condition Variables

� Semaphores

A synchronization objects is a variable used by threads to interact with
each other.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 228 / 246

Thread Synchronisation. . .

We have a race when multiple threads operate on the same set of data.

To avoid confusion mechanisms to synchronise threads interaction are
needed.

There are a few possible methods of synchronising threads:

� Mutual Exclusion (Mutex) Locks

� Condition Variables

� Semaphores

A synchronization objects is a variable used by threads to interact with
each other.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 228 / 246

Thread Synchronisation. . .

We have a race when multiple threads operate on the same set of data.

To avoid confusion mechanisms to synchronise threads interaction are
needed.

There are a few possible methods of synchronising threads:

� Mutual Exclusion (Mutex) Locks

� Condition Variables

� Semaphores

A synchronization objects is a variable used by threads to interact with
each other.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 228 / 246

Thread Synchronisation. . .

We have a race when multiple threads operate on the same set of data.

To avoid confusion mechanisms to synchronise threads interaction are
needed.

There are a few possible methods of synchronising threads:

� Mutual Exclusion (Mutex) Locks

� Condition Variables

� Semaphores

A synchronization objects is a variable used by threads to interact with
each other.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 228 / 246

Thread synchronisation. . .

Thread synchronisation is needed when:

� it is the only way to ensure consistency of shared data.

� two or more threads can use a single synchronisation object jointly.

� we have to ensure the safety of mutable data.

� when there is a race.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 229 / 246

Mutual Exclusion Locks

Mutual exclusion locks (mutexes) are a common method of serialising
thread execution.

Mutual exclusion locks synchronise threads, usually by ensuring that only
one thread at a time executes a critical section of code.

Mutex locks can also preserve single-threaded code.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 230 / 246

Mutual Exclusion Locks

Mutual exclusion locks (mutexes) are a common method of serialising
thread execution.

Mutual exclusion locks synchronise threads, usually by ensuring that only
one thread at a time executes a critical section of code.

Mutex locks can also preserve single-threaded code.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 230 / 246

Mutual Exclusion Locks

Mutual exclusion locks (mutexes) are a common method of serialising
thread execution.

Mutual exclusion locks synchronise threads, usually by ensuring that only
one thread at a time executes a critical section of code.

Mutex locks can also preserve single-threaded code.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 230 / 246

Initialising mutexes. . .

Mutexes are represented by the pthread mutex t object.

Like most of the objects in the Pthread API, it is meant to be an opaque
structure provided to the various mutex interfaces.

Although you can dynamically create mutexes, most uses are static:

/∗ d e f i n e and i n i t i a l i z e a mutex named ‘ mutex ’ ∗/
p t h r e a d m u t e x t mutex = PTHREAD MUTEX INITIALIZER ;

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 231 / 246

Initialising mutexes. . .

Mutexes are represented by the pthread mutex t object.

Like most of the objects in the Pthread API, it is meant to be an opaque
structure provided to the various mutex interfaces.

Although you can dynamically create mutexes, most uses are static:

/∗ d e f i n e and i n i t i a l i z e a mutex named ‘ mutex ’ ∗/
p t h r e a d m u t e x t mutex = PTHREAD MUTEX INITIALIZER ;

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 231 / 246

Initialising mutexes. . .

Mutexes are represented by the pthread mutex t object.

Like most of the objects in the Pthread API, it is meant to be an opaque
structure provided to the various mutex interfaces.

Although you can dynamically create mutexes, most uses are static:

/∗ d e f i n e and i n i t i a l i z e a mutex named ‘ mutex ’ ∗/
p t h r e a d m u t e x t mutex = PTHREAD MUTEX INITIALIZER ;

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 231 / 246

Locking mutexes. . .

Locking (also called acquiring) a Pthreads mutex is accomplished via the
pthread mutex lock() function:

#i n c l u d e <p t h r e a d . h>

i n t p t h r e a d m u t e x l o c k (p t h r e a d m u t e x t ∗mutex) ;

A successful call to pthread mutex lock() will block the calling thread until
the mutex pointed at by mutex becomes available.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 232 / 246

Locking mutexes. . .

Locking (also called acquiring) a Pthreads mutex is accomplished via the
pthread mutex lock() function:

#i n c l u d e <p t h r e a d . h>

i n t p t h r e a d m u t e x l o c k (p t h r e a d m u t e x t ∗mutex) ;

A successful call to pthread mutex lock() will block the calling thread until
the mutex pointed at by mutex becomes available.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 232 / 246

Releasing mutexes. . .

The counterpart to locking is unlocking, or releasing, the mutex:

#i n c l u d e <p t h r e a d . h>

i n t p t h r e a d m u t e x u n l o c k (p t h r e a d m u t e x t ∗mutex) ;

A successful call to pthread mutex unlock() releases the mutex pointed at by
mutex and returns zero.

The call does not block; the mutex is released immediately.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 233 / 246

Releasing mutexes. . .

The counterpart to locking is unlocking, or releasing, the mutex:

#i n c l u d e <p t h r e a d . h>

i n t p t h r e a d m u t e x u n l o c k (p t h r e a d m u t e x t ∗mutex) ;

A successful call to pthread mutex unlock() releases the mutex pointed at by
mutex and returns zero.

The call does not block; the mutex is released immediately.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 233 / 246

Releasing mutexes. . .

The counterpart to locking is unlocking, or releasing, the mutex:

#i n c l u d e <p t h r e a d . h>

i n t p t h r e a d m u t e x u n l o c k (p t h r e a d m u t e x t ∗mutex) ;

A successful call to pthread mutex unlock() releases the mutex pointed at by
mutex and returns zero.

The call does not block; the mutex is released immediately.

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 233 / 246

Example: Using mutexes

s t a t i c p t h r e a d m u t e x t the mutex = PTHREAD MUTEX INITIALIZER ;

i n t withdraw (s t r u c t account ∗ account , i n t amount)
{

p t h r e a d m u t e x l o c k (& the mutex) ;
c o n s t i n t b a l a n c e = account−>b a l a n c e ;
i f (b a l a n c e < amount) {

p t h r e a d m u t e x u n l o c k (& the mutex) ;
r e t u r n −1;

}
account−>b a l a n c e = b a l a n c e − amount ;
p t h r e a d m u t e x u n l o c k (& the mutex) ;
d i s b u r s e m o n e y (amount) ;
r e t u r n 0 ;

}

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 234 / 246

To be continued. . .

Prof. Michele Loreti Thread Libraries: POSIX threads (pthreads) 235 / 246

GNU Make

Prof. Michele Loreti

Laboratorio di Sistemi Operativi
Corso di Laurea in Informatica (L31)
Scuola di Scienze e Tecnologie

Prof. Michele Loreti GNU Make 236 / 246

GNU Make

The make utility automates the mundane aspects of building executable
from source code.

make uses a so-called makefile , which contains rules on how to build the
executables.

You can issue make −−help to list the command-line options; or man make to
display the man pages.

Prof. Michele Loreti GNU Make 237 / 246

GNU Make

The make utility automates the mundane aspects of building executable
from source code.

make uses a so-called makefile , which contains rules on how to build the
executables.

You can issue make −−help to list the command-line options; or man make to
display the man pages.

Prof. Michele Loreti GNU Make 237 / 246

GNU Make

The make utility automates the mundane aspects of building executable
from source code.

make uses a so-called makefile , which contains rules on how to build the
executables.

You can issue make −−help to list the command-line options; or man make to
display the man pages.

Prof. Michele Loreti GNU Make 237 / 246

First Makefile By Example

Let’s begin with a simple example to build the Hello-world program
(hello .c) into executable (hello) via make utility.

// h e l l o . c
#i n c l u d e <s t d i o . h>

i n t main () {
p r i n t f (” H e l l o , w o r l d !\ n”) ;
r e t u r n 0 ;

}

Prof. Michele Loreti GNU Make 238 / 246

First Makefile By Example

Let’s begin with a simple example to build the Hello-world program
(hello .c) into executable (hello) via make utility.

// h e l l o . c
#i n c l u d e <s t d i o . h>

i n t main () {
p r i n t f (” H e l l o , w o r l d !\ n”) ;
r e t u r n 0 ;

}

Prof. Michele Loreti GNU Make 238 / 246

First Makefile By Example

The following file named makefile contains all the rules needed to build the
executable:

a l l : h e l l o

h e l l o : h e l l o . o
gcc −o h e l l o h e l l o . o

h e l l o . o : h e l l o . c
gcc −c h e l l o . c

c l e a n :
rm h e l l o . o h e l l o

This file must be in the same directory of your sources.

Prof. Michele Loreti GNU Make 239 / 246

First Makefile By Example

The following file named makefile contains all the rules needed to build the
executable:

a l l : h e l l o

h e l l o : h e l l o . o
gcc −o h e l l o h e l l o . o

h e l l o . o : h e l l o . c
gcc −c h e l l o . c

c l e a n :
rm h e l l o . o h e l l o

This file must be in the same directory of your sources.

Prof. Michele Loreti GNU Make 239 / 246

Makefile syntax. . .

A makefile consists of a set of rules.

A rule consists of 3 parts:

� a target,

� a list of pre-requisites

� and a command.

A rule has the following form:

t a r g e t : pre−req−1 pre−req−2 . . .
command

The target and pre-requisites are separated by a colon (:). The command
must be preceded by a tab (NOT spaces!!).

Prof. Michele Loreti GNU Make 240 / 246

Makefile syntax. . .

A makefile consists of a set of rules.

A rule consists of 3 parts:

� a target,

� a list of pre-requisites

� and a command.

A rule has the following form:

t a r g e t : pre−req−1 pre−req−2 . . .
command

The target and pre-requisites are separated by a colon (:). The command
must be preceded by a tab (NOT spaces!!).

Prof. Michele Loreti GNU Make 240 / 246

Makefile syntax. . .

A makefile consists of a set of rules.

A rule consists of 3 parts:

� a target,

� a list of pre-requisites

� and a command.

A rule has the following form:

t a r g e t : pre−req−1 pre−req−2 . . .
command

The target and pre-requisites are separated by a colon (:). The command
must be preceded by a tab (NOT spaces!!).

Prof. Michele Loreti GNU Make 240 / 246

Makefile syntax. . .

A makefile consists of a set of rules.

A rule consists of 3 parts:

� a target,

� a list of pre-requisites

� and a command.

A rule has the following form:

t a r g e t : pre−req−1 pre−req−2 . . .
command

The target and pre-requisites are separated by a colon (:). The command
must be preceded by a tab (NOT spaces!!).

Prof. Michele Loreti GNU Make 240 / 246

Makefile syntax. . .

A comment begins with a # and lasts till the end of the line. Long line
can be broken and continued in several lines via a back-slash (\).

A general syntax for the rules is:

t a r g e t 1 [t a r g e t 2 . . .] : [pre−req−1 pre−req−2 . . .]
[command1
command2
.]

A target that does not represent a file is called a phony target.

If the target is a file, it will be checked against its pre-requisite for
out-of-date-ness.

Phony target is always out-of-date and its command will be run.

The standard phony targets are: all, clean, install.

Prof. Michele Loreti GNU Make 241 / 246

Makefile syntax. . .

A comment begins with a # and lasts till the end of the line. Long line
can be broken and continued in several lines via a back-slash (\).

A general syntax for the rules is:

t a r g e t 1 [t a r g e t 2 . . .] : [pre−req−1 pre−req−2 . . .]
[command1
command2
.]

A target that does not represent a file is called a phony target.

If the target is a file, it will be checked against its pre-requisite for
out-of-date-ness.

Phony target is always out-of-date and its command will be run.

The standard phony targets are: all, clean, install.

Prof. Michele Loreti GNU Make 241 / 246

Makefile syntax. . .

A comment begins with a # and lasts till the end of the line. Long line
can be broken and continued in several lines via a back-slash (\).

A general syntax for the rules is:

t a r g e t 1 [t a r g e t 2 . . .] : [pre−req−1 pre−req−2 . . .]
[command1
command2
.]

A target that does not represent a file is called a phony target.

If the target is a file, it will be checked against its pre-requisite for
out-of-date-ness.

Phony target is always out-of-date and its command will be run.

The standard phony targets are: all, clean, install.

Prof. Michele Loreti GNU Make 241 / 246

Makefile syntax. . .

A comment begins with a # and lasts till the end of the line. Long line
can be broken and continued in several lines via a back-slash (\).

A general syntax for the rules is:

t a r g e t 1 [t a r g e t 2 . . .] : [pre−req−1 pre−req−2 . . .]
[command1
command2
.]

A target that does not represent a file is called a phony target.

If the target is a file, it will be checked against its pre-requisite for
out-of-date-ness.

Phony target is always out-of-date and its command will be run.

The standard phony targets are: all, clean, install.

Prof. Michele Loreti GNU Make 241 / 246

Makefile syntax. . .

A comment begins with a # and lasts till the end of the line. Long line
can be broken and continued in several lines via a back-slash (\).

A general syntax for the rules is:

t a r g e t 1 [t a r g e t 2 . . .] : [pre−req−1 pre−req−2 . . .]
[command1
command2
.]

A target that does not represent a file is called a phony target.

If the target is a file, it will be checked against its pre-requisite for
out-of-date-ness.

Phony target is always out-of-date and its command will be run.

The standard phony targets are: all, clean, install.

Prof. Michele Loreti GNU Make 241 / 246

Makefile syntax. . .

A comment begins with a # and lasts till the end of the line. Long line
can be broken and continued in several lines via a back-slash (\).

A general syntax for the rules is:

t a r g e t 1 [t a r g e t 2 . . .] : [pre−req−1 pre−req−2 . . .]
[command1
command2
.]

A target that does not represent a file is called a phony target.

If the target is a file, it will be checked against its pre-requisite for
out-of-date-ness.

Phony target is always out-of-date and its command will be run.

The standard phony targets are: all, clean, install.

Prof. Michele Loreti GNU Make 241 / 246

Makefile: Variables

A variable begins with a $ and is enclosed within parentheses ($(CC),
$(CC FLAGS)).

Automatic variables are set by make after a rule is matched. There include:

� $@: the target filename.

� $∗: the target filename without the file extension.

� $<: the first prerequisite filename.

� $ˆ: the filenames of all the prerequisites, separated by spaces, discard
duplicates.

� $+: similar to $ˆ, but includes duplicates.

� $?: the names of all prerequisites that are newer than the target,
separated by spaces.

Prof. Michele Loreti GNU Make 242 / 246

Makefile: Variables

A variable begins with a $ and is enclosed within parentheses ($(CC),
$(CC FLAGS)).

Automatic variables are set by make after a rule is matched. There include:

� $@: the target filename.

� $∗: the target filename without the file extension.

� $<: the first prerequisite filename.

� $ˆ: the filenames of all the prerequisites, separated by spaces, discard
duplicates.

� $+: similar to $ˆ, but includes duplicates.

� $?: the names of all prerequisites that are newer than the target,
separated by spaces.

Prof. Michele Loreti GNU Make 242 / 246

Example. . .

a l l : h e l l o

h e l l o : h e l l o . o
gcc −o $@ $<

h e l l o . o : h e l l o . c
gcc −c $<

c l e a n :
rm h e l l o . o h e l l o

Prof. Michele Loreti GNU Make 243 / 246

Virtual paths. . .

We can use VPATH (uppercase) to specify the directory to search for
dependencies and target files.

Search f o r d e p e n d e n c i e s and t a r g e t s from ” s r c ” and ” i n c l u d e
” d i r e c t o r i e s

The d i r e c t o r i e s a r e s e p a r a t e d by s p a c e
VPATH = s r c i n c l u d e

We can also use vpath (lowercase) to be more precise about the file type
and its search directory

Search f o r . c f i l e s i n ” s r c ” d i r e c t o r y ;
. h f i l e s i n ” i n c l u d e ” d i r e c t o r y
The p a t t e r n matching c h a r a c t e r ’%’ matches f i l e n a m e w i t h o u t

t h e e x t e n s i o n
vpath %.c s r c
vpath %.h i n c l u d e

Prof. Michele Loreti GNU Make 244 / 246

Virtual paths. . .

We can use VPATH (uppercase) to specify the directory to search for
dependencies and target files.

Search f o r d e p e n d e n c i e s and t a r g e t s from ” s r c ” and ” i n c l u d e
” d i r e c t o r i e s

The d i r e c t o r i e s a r e s e p a r a t e d by s p a c e
VPATH = s r c i n c l u d e

We can also use vpath (lowercase) to be more precise about the file type
and its search directory

Search f o r . c f i l e s i n ” s r c ” d i r e c t o r y ;
. h f i l e s i n ” i n c l u d e ” d i r e c t o r y
The p a t t e r n matching c h a r a c t e r ’%’ matches f i l e n a m e w i t h o u t

t h e e x t e n s i o n
vpath %.c s r c
vpath %.h i n c l u d e

Prof. Michele Loreti GNU Make 244 / 246

Pattern Rules. . .

A pattern rule, which uses pattern matching character ’%’ as the filename,
can be applied to create a target, if there is no explicit rule.

A p p l i c a b l e f o r c r e a t e . o o b j e c t f i l e .
’%’ matches f i l e n a m e .
$< i s t h e f i r s t pre− r e q u i s i t e
$ (COMPILE . c) c o n s i s t s o f c o m p i l e r name and c o m p i l e r o p t i o n s
$ (OUTPUT OPTIONS) c o u l d be −o $@
%.o : %.c

$ (COMPILE . c) $ (OUTPUT OPTION) $<

A p p l i c a b l e f o r c r e a t e e x e c u t a b l e (w i t h o u t e x t e n s i o n)
from o b j e c t . o o b j e c t f i l e
$ˆ matches a l l t h e pre− r e q u i s i t e s (no d u p l i c a t e s)
%: %.o

$ (LINK . o) $ˆ $ (LOADLIBES) $ (LDLIBS) −o $@

Prof. Michele Loreti GNU Make 245 / 246

To be continued. . .

Prof. Michele Loreti GNU Make 246 / 246

