
eXtreme Programming (XP)

Andrea Polini

Software Project Management
MSc in Computer Science

University of Camerino

Andrea Polini eXtreme Programming (XP) SPM 1 / 23



eXtreme Programming

Changes and SW development

Among the agile principles:
Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive
advantage

Easy to say, but ...

Developers hate changes

They know that making changes can cause the introduction of bugs.
The more changes you make the more brittle the codebase gets.
Imagine what can happen with frequent changes.

Andrea Polini eXtreme Programming (XP) SPM 2 / 23



eXtreme Programming

Changes and SW development

Among the agile principles:
Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive
advantage

Easy to say, but ...

Developers hate changes

They know that making changes can cause the introduction of bugs.
The more changes you make the more brittle the codebase gets.
Imagine what can happen with frequent changes.

Andrea Polini eXtreme Programming (XP) SPM 2 / 23



eXtreme Programming

Supporting changes in XP

XP practices
To support changes XP proposes the adoption of a set of practices for
SW development, that are organized in 4 disjoint groups:

Programming
Integration
Planning
Team

Andrea Polini eXtreme Programming (XP) SPM 3 / 23



eXtreme Programming

Programming Practices

Test first programming

Tests are written before the code

Code is built to pass the tests

Automated testing frameworks are adopted (JUnit)

Tests are run every time the code is built

Tests are part of the codebase

Pair programming

Two programmers sits together at the workstation

One of the programmer writes the code, and the other observes. Nevertheless
they constantly discuss what to write.

Effects:
reduced risks of shortcuts
more innovative code
continuous review of code

Andrea Polini eXtreme Programming (XP) SPM 4 / 23



eXtreme Programming

Programming Practices

Test first programming

Tests are written before the code

Code is built to pass the tests

Automated testing frameworks are adopted (JUnit)

Tests are run every time the code is built

Tests are part of the codebase

Pair programming

Two programmers sits together at the workstation

One of the programmer writes the code, and the other observes. Nevertheless
they constantly discuss what to write.

Effects:
reduced risks of shortcuts
more innovative code
continuous review of code

Andrea Polini eXtreme Programming (XP) SPM 4 / 23



eXtreme Programming

Programming Practices

Incremental design

cost of large-scale design changes rise dramatically over time

most economical cost design strategy is to make big design decisions early and
defer all small-scale decisions until later

XP teams are confident in their ability to adapt the design to future requirements.
The advice to XP teams is not to minimize design investment over the short run, but to
keep the design investment in proportion to the needs of the system so far.
Incremental design suggests that the most effective time to design is in the light of
experience
Eliminate duplication. If you have the same login in two places you must work with
design to understand how you can have only one copy.

Andrea Polini eXtreme Programming (XP) SPM 5 / 23



eXtreme Programming

Integration Practices

10-minute build

under 10 minutes build for the whole codebase
The build includes all the unit tests and generates a report with pass/fail results

continuous integration

use a server to permit to people to share the codebase and to work in parallel

use check-out to create local copies and make commits for working copies

chick-out often and run tests before committing

a build token can be used to pass the right to integrate and reduce the risks
known as “integration hell”

Andrea Polini eXtreme Programming (XP) SPM 6 / 23



eXtreme Programming

Planning Practices

Only software in status done done is delivered

Weekly cycle

one-week iterations
start with a planning meeting where together with the customers the team selects
the stories for the iteration, and split them in tasks
each developer then select a story and develop tests for the story and tasks
than the developer write the code

Stories

Stories are the main tool to identify needs and to consequently drive the work

Andrea Polini eXtreme Programming (XP) SPM 7 / 23



eXtreme Programming

Planning Practices

Quarterly cycle

XP teams use quarterly cycle practice to do long-term planning.

the team discuss themes to put together stories and to identify missing ones

the team reflects on the progress made and on how the project is going overall

Slack

Add minor lower-priority stories to each weekly cycle

Andrea Polini eXtreme Programming (XP) SPM 8 / 23



eXtreme Programming

Team Practices

Sit together

Face to face interactions are fundamental for hte health of the project. Programming is
a highly social activity. Organize the workspace to suite private reflection and joint
work.

Informative workspace

team working environment is set up to automatically communicate important
project information to anyone in the project

information radiators and osmotic communication

Andrea Polini eXtreme Programming (XP) SPM 9 / 23



eXtreme Programming

Team Practices

Energized work

establish an environment where every team member is given enough time and
freedom to do the job

avoid continuous distraction, and avoid unjustified pressure

work only as many hours as you can be productive

work only as many hours as you can sustain

Whole team

All the contributors to an XP project sit together, members of one team

Everyone on an XP team contributes in any way that they can. The best teams
have no specialists, only general contributors with special skills.

Andrea Polini eXtreme Programming (XP) SPM 10 / 23



eXtreme Programming

XP values

XP additional values

Communication: each team member is aware of the work everyone else is doing

Simplicity: developers focus on writing the most simple and direct solutions
possible

Feedback: constant tests and feedback loops keep the quality of the product in
check

Courage: each team member is focused on making the best choice for the
project, even if it means having to discard failing solutions or approach things
differently

Respect: each team member is important and valuable for the project

Andrea Polini eXtreme Programming (XP) SPM 11 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Embracing changes
Gap between the practices and the values. Principles help to guide you in applying
the practices. Still to permit to embrace changes.

Humanity: projects are built by people - balance project and people needs
Economics: somebody is paying - everybody has to keep the budget in mind
Mutual Benefit: practices that benefit individual, team, customer together
Self similarity: when you find a practice that works stick with it at different levels
Improvement: do your best today and try to improve for tomorrow
Diversity: different opinions and perspectives lead to better solutions
Reflection: good teams stay aware of what’s working and what isn’t in their proc.
Flow: constant delivery means a continuos flow of development work
Opportunity: problems are opportunities to learn something new
Redundancy: it can seem wasteful but often can avoid big quality problems
Failure: It’s OK to try things that don’t work. You can learn from failing
Quality: You can’t deliver faster by accepting a lower quality product
Accepted responsibility: resp. of something means authority to get it done
Baby steps: take small steps in the right direction rather than making big
changes when adopting new practices

Andrea Polini eXtreme Programming (XP) SPM 12 / 23



eXtreme Programming

Notes from the principles

XP teams reject separation of roles, this reduce the capability of doing the
maximum, the opportunities for improving and learning, and finally it reduce the
possibility to get help

Pairs generally rotate to foster diversity and learning

Pair programming generally enable reflection and feedbacks

teams write hours they think are needed to implement a story

the use of stories fits with the principles

you accept critics and are not afraid of making critics to your teammate

Andrea Polini eXtreme Programming (XP) SPM 13 / 23



eXtreme Programming

Notes from the principles

XP teams reject separation of roles, this reduce the capability of doing the
maximum, the opportunities for improving and learning, and finally it reduce the
possibility to get help

Pairs generally rotate to foster diversity and learning

Pair programming generally enable reflection and feedbacks

teams write hours they think are needed to implement a story

the use of stories fits with the principles

you accept critics and are not afraid of making critics to your teammate

Andrea Polini eXtreme Programming (XP) SPM 13 / 23



eXtreme Programming

Notes from the principles

XP teams reject separation of roles, this reduce the capability of doing the
maximum, the opportunities for improving and learning, and finally it reduce the
possibility to get help

Pairs generally rotate to foster diversity and learning

Pair programming generally enable reflection and feedbacks

teams write hours they think are needed to implement a story

the use of stories fits with the principles

you accept critics and are not afraid of making critics to your teammate

Andrea Polini eXtreme Programming (XP) SPM 13 / 23



eXtreme Programming

Notes from the principles

XP teams reject separation of roles, this reduce the capability of doing the
maximum, the opportunities for improving and learning, and finally it reduce the
possibility to get help

Pairs generally rotate to foster diversity and learning

Pair programming generally enable reflection and feedbacks

teams write hours they think are needed to implement a story

the use of stories fits with the principles

you accept critics and are not afraid of making critics to your teammate

Andrea Polini eXtreme Programming (XP) SPM 13 / 23



eXtreme Programming

Notes from the principles

XP teams reject separation of roles, this reduce the capability of doing the
maximum, the opportunities for improving and learning, and finally it reduce the
possibility to get help

Pairs generally rotate to foster diversity and learning

Pair programming generally enable reflection and feedbacks

teams write hours they think are needed to implement a story

the use of stories fits with the principles

you accept critics and are not afraid of making critics to your teammate

Andrea Polini eXtreme Programming (XP) SPM 13 / 23



eXtreme Programming

Notes from the principles

XP teams reject separation of roles, this reduce the capability of doing the
maximum, the opportunities for improving and learning, and finally it reduce the
possibility to get help

Pairs generally rotate to foster diversity and learning

Pair programming generally enable reflection and feedbacks

teams write hours they think are needed to implement a story

the use of stories fits with the principles

you accept critics and are not afraid of making critics to your teammate

Andrea Polini eXtreme Programming (XP) SPM 13 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Corollary practices

Real customer involvement: involve customers in planning and actually listen to them

Incremental deployment: deploy smal pieces of the system individually than one “big shot”

Team continuity: keep effective teams together

Shrinking teams: use people from teams to spread competences and XP culture

route-cause analysis: figure out a problem if something went wrong, and why the problem
occurred, and wha caused the occurrence

Shared code: everyone collectively owns the code

Code and tests: write code and test and generate the rest (people do not read dusty
binders)

Single codebase: don’t manage multiple versions

Daily deployment: push a new version of the software into production every day

Negotiated scope contract: fix the time and have an ongoing negotiation of the scope,
instead than viceversa

Pay-per-use: charge not for the development but for the usage. Improve feedbacks and
relevance of functionality

Practices are natural when the mindset aborbed the values and the principles

Andrea Polini eXtreme Programming (XP) SPM 14 / 23



eXtreme Programming

Simplicity and Incremental design

Build software that can be exended and changed easily. Clever
solutions can be dangerous. Prefer simplicity!

Rookies are not more “dangerous” then experienced developers
Complexity often comes from guessing future needs.

code smells/antipatterns
there are recurring situations in coding that indicate that you “violating”
some property

Andrea Polini eXtreme Programming (XP) SPM 15 / 23



eXtreme Programming

Typical Code smells

They can be statically or dynamically identified
shotgun surgery – simple changes lead to cascading changes
half-baked code – strong hard-coded dependencies
very large classes
duplicated code
spaghetti code
lasagna code

Andrea Polini eXtreme Programming (XP) SPM 16 / 23



eXtreme Programming

Typical Code smells

They can be statically or dynamically identified
shotgun surgery – simple changes lead to cascading changes
half-baked code – strong hard-coded dependencies
very large classes
duplicated code
spaghetti code
lasagna code

Andrea Polini eXtreme Programming (XP) SPM 16 / 23



eXtreme Programming

Typical Code smells

They can be statically or dynamically identified
shotgun surgery – simple changes lead to cascading changes
half-baked code – strong hard-coded dependencies
very large classes
duplicated code
spaghetti code
lasagna code

Andrea Polini eXtreme Programming (XP) SPM 16 / 23



eXtreme Programming

Typical Code smells

They can be statically or dynamically identified
shotgun surgery – simple changes lead to cascading changes
half-baked code – strong hard-coded dependencies
very large classes
duplicated code
spaghetti code
lasagna code

Andrea Polini eXtreme Programming (XP) SPM 16 / 23



eXtreme Programming

Typical Code smells

They can be statically or dynamically identified
shotgun surgery – simple changes lead to cascading changes
half-baked code – strong hard-coded dependencies
very large classes
duplicated code
spaghetti code
lasagna code

Andrea Polini eXtreme Programming (XP) SPM 16 / 23



eXtreme Programming

Typical Code smells

They can be statically or dynamically identified
shotgun surgery – simple changes lead to cascading changes
half-baked code – strong hard-coded dependencies
very large classes
duplicated code
spaghetti code
lasagna code

Andrea Polini eXtreme Programming (XP) SPM 16 / 23



eXtreme Programming

Problems with “cleverness”

Typical problems in the code:
hooks – use of placeholders
edge case – obsession for rare and exceptional scenarios
framework trap

Andrea Polini eXtreme Programming (XP) SPM 17 / 23



eXtreme Programming

The framework trap

Generally developers like to overgeneralize. A simple problem often
can lead to a framework that intend to solve the same problem in many
different contexts

e.g. need for a web page overgeneralized in a framework to define pages

Libraries vs Frameworks

Andrea Polini eXtreme Programming (XP) SPM 18 / 23



eXtreme Programming

The framework trap

Generally developers like to overgeneralize. A simple problem often
can lead to a framework that intend to solve the same problem in many
different contexts

e.g. need for a web page overgeneralized in a framework to define pages

Libraries vs Frameworks

Andrea Polini eXtreme Programming (XP) SPM 18 / 23



eXtreme Programming

Technical debt

When you release software with poor design and code you are taking
a debt (technical debt)

An effective XP team fix technical debt by refactoring mercilessly
slack are good candidates for repaying the debt
reflection and refactoring are needed to capture smells
fail fast strategy reduce risks of accumulating debts

Continuous integration – at least once per day the whole codebase
should be integrated

Andrea Polini eXtreme Programming (XP) SPM 19 / 23



eXtreme Programming

TDD

Now we’ll walk through a custom List implementation using the
Test-Driven Development (TDD) process.

ATTENTION
TDD is a design tool, enabling us to drive our implementation with the
help of tests

public class CustomList<E> implements List<E> {
private Object[] internal = {};
// empty implementation methods

}

Andrea Polini eXtreme Programming (XP) SPM 20 / 23



eXtreme Programming

First Cycle

@Test
public void givenEmptyList_TrueIsReturned() {

List<Object> list = new CustomList<>();

assertTrue(list.isEmpty());
}

Given the test which is a simple correct implementation?

@Override
public boolean isEmpty() {

return true;
}

Andrea Polini eXtreme Programming (XP) SPM 21 / 23



eXtreme Programming

First Cycle

@Test
public void givenEmptyList_TrueIsReturned() {

List<Object> list = new CustomList<>();

assertTrue(list.isEmpty());
}

Given the test which is a simple correct implementation?

@Override
public boolean isEmpty() {

return true;
}

Andrea Polini eXtreme Programming (XP) SPM 21 / 23



eXtreme Programming

2nd Cycle

@Test
public void givenNonEmptyList_thenFalseIsReturned() {

List<Object> list = new CustomList<>();
list.add(null);

assertFalse(list.isEmpty());
}

@Override
public boolean isEmpty() {

if (internal.length != 0) {
return false;

} else {
return true;

}
}

Andrea Polini eXtreme Programming (XP) SPM 22 / 23



eXtreme Programming

2nd Cycle

@Test
public void givenNonEmptyList_thenFalseIsReturned() {

List<Object> list = new CustomList<>();
list.add(null);

assertFalse(list.isEmpty());
}

@Override
public boolean isEmpty() {

if (internal.length != 0) {
return false;

} else {
return true;

}
}

Andrea Polini eXtreme Programming (XP) SPM 22 / 23



eXtreme Programming

Slack and Refactoring

@Override
public boolean isEmpty() {

return internal.length == 0;
}

Andrea Polini eXtreme Programming (XP) SPM 23 / 23



eXtreme Programming

FAQs

Writing tests is an activity generally left to QA teams and to lower
profiles. Is it worthy to engage senior and skilled programmers in
such an activity?
I’m a programmer and how do I know what to do next?
Isn’t better to assign tasks on the base of expertise?

Andrea Polini eXtreme Programming (XP) SPM 24 / 23


	eXtreme Programming

