
LOGIC IN COMPUTER SCIENCE

Modelling and Reasoning about Systems

MICHAEL HUTH
Department of Computing

Imperial College London, United Kingdom

MARK RYAN
School of Computer Science

University of Birmingham, United Kingdom



1

Propositional logic

The aim of logic in computer science is to develop languages to model the
situations we encounter as computer science professionals, in such a way
that we can reason about them formally. Reasoning about situations means
constructing arguments about them; we want to do this formally, so that
the arguments are valid and can be defended rigorously, or executed on a
machine.

Consider the following argument:

Example 1.1 If the train arrives late and there are no taxis at the station,
then John is late for his meeting. John is not late for his meeting. The train
did arrive late. Therefore, there were taxis at the station.

Intuitively, the argument is valid, since if we put the first sentence and
the third sentence together, they tell us that if there are no taxis, then John
will be late. The second sentence tells us that he was not late, so it must be
the case that there were taxis.

Much of this book will be concerned with arguments that have this struc-
ture, namely, that consist of a number of sentences followed by the word
‘therefore’ and then another sentence. The argument is valid if the sentence
after the ‘therefore’ logically follows from the sentences before it. Exactly
what we mean by ‘follows from’ is the subject of this chapter and the next
one.

Consider another example:

Example 1.2 If it is raining and Jane does not have her umbrella with her,
then she will get wet. Jane is not wet. It is raining. Therefore, Jane has her
umbrella with her.

This is also a valid argument. Closer examination reveals that it actually
has the same structure as the argument of the previous example! All we have

1



2 1 Propositional logic

done is substituted some sentence fragments for others:

Example 1.1 Example 1.2
the train is late it is raining
there are taxis at the station Jane has her umbrella with her
John is late for his meeting Jane gets wet.

The argument in each example could be stated without talking about trains
and rain, as follows:

If p and not q, then r. Not r. p. Therefore, q.

In developing logics, we are not concerned with what the sentences really
mean, but only in their logical structure. Of course, when we apply such
reasoning, as done above, such meaning will be of great interest.

1.1 Declarative sentences

In order to make arguments rigorous, we need to develop a language in which
we can express sentences in such a way that brings out their logical structure.
The language we begin with is the language of propositional logic. It is based
on propositions, or declarative sentences which one can, in principle, argue
as being true or false. Examples of declarative sentences are:

(1) The sum of the numbers 3 and 5 equals 8.
(2) Jane reacted violently to Jack’s accusations.
(3) Every even natural number >2 is the sum of two prime numbers.
(4) All Martians like pepperoni on their pizza.
(5) Albert Camus était un écrivain français.
(6) Die Würde des Menschen ist unantastbar.

These sentences are all declarative, because they are in principle capable of
being declared ‘true’, or ‘false’. Sentence (1) can be tested by appealing to
basic facts about arithmetic (and by tacitly assuming an Arabic, decimal
representation of natural numbers). Sentence (2) is a bit more problematic.
In order to give it a truth value, we need to know who Jane and Jack are
and perhaps to have a reliable account from someone who witnessed the
situation described. In principle, e.g., if we had been at the scene, we feel
that we would have been able to detect Jane’s violent reaction, provided
that it indeed occurred in that way. Sentence (3), known as Goldbach’s
conjecture, seems straightforward on the face of it. Clearly, a fact about
all even numbers >2 is either true or false. But to this day nobody knows
whether sentence (3) expresses a truth or not. It is even not clear whether
this could be shown by some finite means, even if it were true. However, in



1.1 Declarative sentences 3

this text we will be content with sentences as soon as they can, in principle,
attain some truth value regardless of whether this truth value reflects the
actual state of affairs suggested by the sentence in question. Sentence (4)
seems a bit silly, although we could say that if Martians exist and eat pizza,
then all of them will either like pepperoni on it or not. (We have to introduce
predicate logic in Chapter 2 to see that this sentence is also declarative if no
Martians exist; it is then true.) Again, for the purposes of this text sentence
(4) will do. Et alors, qu’est-ce qu’on pense des phrases (5) et (6)? Sentences
(5) and (6) are fine if you happen to read French and German a bit. Thus,
declarative statements can be made in any natural, or artificial, language.

The kind of sentences we won’t consider here are non-declarative ones,
like! Could you please pass me the salt?! Ready, steady, go!! May fortune come your way.

Primarily, we are interested in precise declarative sentences, or statements
about the behaviour of computer systems, or programs. Not only do we
want to specify such statements but we also want to check whether a given
program, or system, fulfils a specification at hand. Thus, we need to develop
a calculus of reasoning which allows us to draw conclusions from given as-
sumptions, like initialised variables, which are reliable in the sense that they
preserve truth: if all our assumptions are true, then our conclusion ought to
be true as well. A much more difficult question is whether, given any true
property of a computer program, we can find an argument in our calculus
that has this property as its conclusion. The declarative sentence (3) above
might illuminate the problematic aspect of such questions in the context of
number theory.

The logics we intend to design are symbolic in nature. We translate a cer-
tain sufficiently large subset of all English declarative sentences into strings
of symbols. This gives us a compressed but still complete encoding of declar-
ative sentences and allows us to concentrate on the mere mechanics of our
argumentation. This is important since specifications of systems or software
are sequences of such declarative sentences. It further opens up the possibil-
ity of automatic manipulation of such specifications, a job that computers
just love to do1. Our strategy is to consider certain declarative sentences as

1 There is a certain, slightly bitter, circularity in such endeavours: in proving that a certain
computer program P satisfies a given property, we might let some other computer program Q try
to find a proof that P satisfies the property; but who guarantees us that Q satisfies the property
of producing only correct proofs? We seem to run into an infinite regress.



4 1 Propositional logic

being atomic, or indecomposable, like the sentence

‘The number 5 is even.’

We assign certain distinct symbols p, q, r, . . ., or sometimes p1, p2, p3, . . . to
each of these atomic sentences and we can then code up more complex
sentences in a compositional way. For example, given the atomic sentences

p: ‘I won the lottery last week.’
q: ‘I purchased a lottery ticket.’
r: ‘I won last week’s sweepstakes.’

we can form more complex sentences according to the rules below:

¬: The negation of p is denoted by ¬p and expresses ‘I did not win the lottery
last week,’ or equivalently ‘It is not true that I won the lottery last week.’

∨: Given p and r we may wish to state that at least one of them is true: ‘I won the
lottery last week, or I won last week’s sweepstakes;’ we denote this declarative
sentence by p ∨ r and call it the disjunction of p and r2.

∧: Dually, the formula p ∧ r denotes the rather fortunate conjunction of p and r:
‘Last week I won the lottery and the sweepstakes.’

→: Last, but definitely not least, the sentence ‘If I won the lottery last week,
then I purchased a lottery ticket.’ expresses an implication between p and q,
suggesting that q is a logical consequence of p. We write p → q for that3. We
call p the assumption of p → q and q its conclusion.

Of course, we are entitled to use these rules of constructing propositions
repeatedly. For example, we are now in a position to form the proposition

p ∧ q → ¬r ∨ q

which means that ‘if p and q then not r or q’. You might have noticed a
potential ambiguity in this reading. One could have argued that this sentence
has the structure ‘p is the case and if q then . . . ’ A computer would require
the insertion of brackets, as in

(p ∧ q) → ((¬r) ∨ q)

2 Its meaning should not be confused with the often implicit meaning of or in natural language
discourse as either . . .or. In this text or always means at least one of them and should not be
confounded with exclusive or which states that exactly one of the two statements holds.

3 The natural language meaning of ‘if . . . then . . . ’ often implicitly assumes a causal role of
the assumption somehow enabling its conclusion. The logical meaning of implication is a bit
different, though, in the sense that it states the preservation of truth which might happen
without any causal relationship. For example, ‘If all birds can fly, then Bob Dole was never
president of the United States of America.’ is a true statement, but there is no known causal
connection between the flying skills of penguins and effective campaigning.



1.2 Natural deduction 5

to disambiguate this assertion. However, we humans get annoyed by a pro-
liferation of such brackets which is why we adopt certain conventions about
the binding priorities of these symbols.

Convention 1.3 ¬ binds more tightly than ∨ and ∧, and the latter two
bind more tightly than →. Implication → is right-associative: expressions of
the form p → q → r denote p → (q → r).

1.2 Natural deduction

How do we go about constructing a calculus for reasoning about proposi-
tions, so that we can establish the validity of Examples 1.1 and 1.2? Clearly,
we would like to have a set of rules each of which allows us to draw a con-
clusion given a certain arrangement of premises.

In natural deduction, we have such a collection of proof rules. They al-
low us to infer formulas from other formulas. By applying these rules in
succession, we may infer a conclusion from a set of premises.

Let’s see how this works. Suppose we have a set of formulas4 φ1, φ2,
φ3, . . . , φn, which we will call premises, and another formula, ψ, which we
will call a conclusion. By applying proof rules to the premises, we hope
to get some more formulas, and by applying more proof rules to those, to
eventually obtain the conclusion. This intention we denote by

φ1,φ2, . . . ,φn ⊢ ψ.

This expression is called a sequent ; it is valid if a proof for it can be found.
The sequent for Examples 1.1 and 1.2 is p ∧ ¬q → r,¬r, p ⊢ q. Construct-
ing such a proof is a creative exercise, a bit like programming. It is not
necessarily obvious which rules to apply, and in what order, to obtain the
desired conclusion. Additionally, our proof rules should be carefully chosen;
otherwise, we might be able to ‘prove’ invalid patterns of argumentation. For

4 It is traditional in logic to use Greek letters. Lower-case letters are used to stand for formulas
and upper-case letters are used for sets of formulas. Here are some of the more commonly used
Greek letters, together with their pronunciation:

Lower-case
φ phi
ψ psi
χ chi
η eta
α alpha
β beta
γ gamma

Upper-case
Φ Phi
Ψ Psi
Γ Gamma
∆ Delta



6 1 Propositional logic

example, we expect that we won’t be able to show the sequent p, q ⊢ p ∧ ¬q.
For example, if p stands for ‘Gold is a metal.’ and q for ‘Silver is a metal,’
then knowing these two facts should not allow us to infer that ‘Gold is a
metal whereas silver isn’t.’

Let’s now look at our proof rules. We present about fifteen of them in
total; we will go through them in turn and then summarise at the end of
this section.

1.2.1 Rules for natural deduction

The rules for conjunction Our first rule is called the rule for conjunc-
tion (∧): and-introduction. It allows us to conclude φ ∧ ψ, given that we
have already concluded φ and ψ separately. We write this rule as

φ ψ

φ ∧ ψ ∧i.

Above the line are the two premises of the rule. Below the line goes the
conclusion. (It might not yet be the final conclusion of our argument;
we might have to apply more rules to get there.) To the right of the line,
we write the name of the rule; ∧i is read ‘and-introduction’. Notice that we
have introduced a ∧ (in the conclusion) where there was none before (in the
premises).

For each of the connectives, there is one or more rules to introduce it and
one or more rules to eliminate it. The rules for and-elimination are these
two:

φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2. (1.1)

The rule ∧e1 says: if you have a proof of φ ∧ ψ, then by applying this rule
you can get a proof of φ. The rule ∧e2 says the same thing, but allows
you to conclude ψ instead. Observe the dependences of these rules: in the
first rule of (1.1), the conclusion φ has to match the first conjunct of the
premise, whereas the exact nature of the second conjunct ψ is irrelevant.
In the second rule it is just the other way around: the conclusion ψ has to
match the second conjunct ψ and φ can be any formula. It is important
to engage in this kind of pattern matching before the application of proof
rules.

Example 1.4 Let’s use these rules to prove that p ∧ q, r |− q ∧ r is valid.
We start by writing down the premises; then we leave a gap and write the



1.2 Natural deduction 7

conclusion:

p ∧ q
r

q ∧ r

The task of constructing the proof is to fill the gap between the premises
and the conclusion by applying a suitable sequence of proof rules. In this
case, we apply ∧e2 to the first premise, giving us q. Then we apply ∧i to this
q and to the second premise, r, giving us q ∧ r. That’s it! We also usually
number all the lines, and write in the justification for each line, producing
this:

1 p ∧ q premise

2 r premise

3 q ∧e2 1

4 q ∧ r ∧i 3, 2

Demonstrate to yourself that you’ve understood this by trying to show on
your own that (p ∧ q) ∧ r, s ∧ t |− q ∧ s is valid. Notice that the φ and ψ can
be instantiated not just to atomic sentences, like p and q in the example we
just gave, but also to compound sentences. Thus, from (p ∧ q) ∧ r we can
deduce p ∧ q by applying ∧e1, instantiating φ to p ∧ q and ψ to r.

If we applied these proof rules literally, then the proof above would actu-
ally be a tree with root q ∧ r and leaves p ∧ q and r, like this:

p ∧ q
∧e2

q r
∧i

q ∧ r

However, we flattened this tree into a linear presentation which necessitates
the use of pointers as seen in lines 3 and 4 above. These pointers allow
us to recreate the actual proof tree. Throughout this text, we will use the
flattened version of presenting proofs. That way you have to concentrate only
on finding a proof, not on how to fit a growing tree onto a sheet of paper.

If a sequent is valid, there may be many different ways of proving it. So if
you compare your solution to these exercises with those of others, they need
not coincide. The important thing to realise, though, is that any putative
proof can be checked for correctness by checking each individual line, starting
at the top, for the valid application of its proof rule.



8 1 Propositional logic

The rules of double negation Intuitively, there is no difference be-
tween a formula φ and its double negation ¬¬φ, which expresses no more
and nothing less than φ itself. The sentence

‘It is not true that it does not rain.’

is just a more contrived way of saying

‘It rains.’

Conversely, knowing ‘It rains,’ we are free to state this fact in this more
complicated manner if we wish. Thus, we obtain rules of elimination and
introduction for double negation:

¬¬φ
φ

¬¬e
φ

¬¬φ ¬¬i.

(There are rules for single negation on its own, too, which we will see later.)

Example 1.5 The proof of the sequent p,¬¬(q ∧ r) ⊢ ¬¬p ∧ r below uses
most of the proof rules discussed so far:

1 p premise

2 ¬¬(q ∧ r) premise

3 ¬¬p ¬¬i 1

4 q ∧ r ¬¬e 2

5 r ∧e2 4

6 ¬¬p ∧ r ∧i 3, 5

Example 1.6 We now prove the sequent (p ∧ q) ∧ r, s ∧ t |− q ∧ s which
you were invited to prove by yourself in the last section. Please compare
the proof below with your solution:

1 (p ∧ q) ∧ r premise

2 s ∧ t premise

3 p ∧ q ∧e1 1

4 q ∧e2 3

5 s ∧e1 2

6 q ∧ s ∧i 4, 5



1.2 Natural deduction 9

The rule for eliminating implication There is one rule to introduce
→ and one to eliminate it. The latter is one of the best known rules of
propositional logic and is often referred to by its Latin name modus ponens.
We will usually call it by its modern name, implies-elimination (sometimes
also referred to as arrow-elimination). This rule states that, given φ and
knowing that φ implies ψ, we may rightfully conclude ψ. In our calculus, we
write this as

φ φ→ ψ

ψ
→e.

Let us justify this rule by spelling out instances of some declarative sen-
tences p and q. Suppose that

p : It rained.
p → q : If it rained, then the street is wet.

so q is just ‘The street is wet.’ Now, if we know that it rained and if we
know that the street is wet in the case that it rained, then we may combine
these two pieces of information to conclude that the street is indeed wet.
Thus, the justification of the →e rule is a mere application of common sense.
Another example from programming is:

p : The value of the program’s input is an integer.
p → q : If the program’s input is an integer, then the program outputs

a boolean.

Again, we may put all this together to conclude that our program outputs
a boolean value if supplied with an integer input. However, it is important
to realise that the presence of p is absolutely essential for the inference
to happen. For example, our program might well satisfy p → q, but if it
doesn’t satisfy p – e.g. if its input is a surname – then we will not be able to
derive q.

As we saw before, the formal parameters φ and the ψ for →e can be
instantiated to any sentence, including compound ones:

1 ¬p ∧ q premise

2 ¬p ∧ q → r ∨ ¬p premise

3 r ∨ ¬p →e 2, 1



10 1 Propositional logic

Of course, we may use any of these rules as often as we wish. For example,
given p, p → q and p → (q → r), we may infer r:

1 p → (q → r) premise

2 p → q premise

3 p premise

4 q → r →e 1, 3

5 q →e 2, 3

6 r →e 4, 5

Before turning to implies-introduction, let’s look at a hybrid rule which
has the Latin name modus tollens. It is like the →e rule in that it eliminates
an implication. Suppose that p → q and ¬q are the case. Then, if p holds
we can use →e to conclude that q holds. Thus, we then have that q and ¬q
hold, which is impossible. Therefore, we may infer that p must be false. But
this can only mean that ¬p is true. We summarise this reasoning into the
rule modus tollens, or MT for short:5

φ→ ψ ¬ψ
¬φ MT.

Again, let us see an example of this rule in the natural language setting:
‘If Abraham Lincoln was Ethiopian, then he was African. Abraham
Lincoln was not African; therefore he was not Ethiopian.’

Example 1.7 In the following proof of

p → (q → r), p, ¬r ⊢ ¬q

we use several of the rules introduced so far:

1 p → (q → r) premise

2 p premise

3 ¬r premise

4 q → r →e 1, 2

5 ¬q MT 4, 3

5 We will be able to derive this rule from other ones later on, but we introduce it here because it
allows us already to do some pretty slick proofs. You may think of this rule as one on a higher
level insofar as it does not mention the lower-level rules upon which it depends.



1.2 Natural deduction 11

Examples 1.8 Here are two example proofs which combine the rule MT
with either ¬¬e or ¬¬i:

1 ¬p → q premise

2 ¬q premise

3 ¬¬p MT 1, 2

4 p ¬¬e 3

proves that the sequent ¬p → q, ¬q ⊢ p is valid; and

1 p → ¬q premise

2 q premise

3 ¬¬q ¬¬i 2

4 ¬p MT 1, 3

shows the validity of the sequent p → ¬q, q ⊢ ¬p.

Note that the order of applying double negation rules and MT is different
in these examples; this order is driven by the structure of the particular
sequent whose validity one is trying to show.

The rule implies introduction The rule MT made it possible for us to
show that p → q, ¬q ⊢ ¬p is valid. But the validity of the sequent p → q ⊢
¬q → ¬p seems just as plausible. That sequent is, in a certain sense, saying
the same thing. Yet, so far we have no rule which builds implications that
do not already occur as premises in our proofs. The mechanics of such a rule
are more involved than what we have seen so far. So let us proceed with
care. Let us suppose that p → q is the case. If we temporarily assume that
¬q holds, we can use MT to infer ¬p. Thus, assuming p → q we can show
that ¬q implies ¬p; but the latter we express symbolically as ¬q → ¬p. To
summarise, we have found an argumentation for p → q ⊢ ¬q → ¬p:

1 p → q premise

2 ¬q assumption

3 ¬p MT 1, 2

4 ¬q → ¬p →i 2−3

The box in this proof serves to demarcate the scope of the temporary as-
sumption ¬q. What we are saying is: let’s make the assumption of ¬q. To



12 1 Propositional logic

do this, we open a box and put ¬q at the top. Then we continue applying
other rules as normal, for example to obtain ¬p. But this still depends on
the assumption of ¬q, so it goes inside the box. Finally, we are ready to
apply →i. It allows us to conclude ¬q → ¬p, but that conclusion no longer
depends on the assumption ¬q. Compare this with saying that ‘If you are
French, then you are European.’ The truth of this sentence does not depend
on whether anybody is French or not. Therefore, we write the conclusion
¬q → ¬p outside the box.

This works also as one would expect if we think of p → q as a type of a
procedure. For example, p could say that the procedure expects an integer
value x as input and q might say that the procedure returns a boolean value
y as output. The validity of p → q amounts now to an assume-guarantee
assertion: if the input is an integer, then the output is a boolean. This
assertion can be true about a procedure while that same procedure could
compute strange things or crash in the case that the input is not an in-
teger. Showing p → q using the rule →i is now called type checking , an
important topic in the construction of compilers for typed programming
languages.

We thus formulate the rule →i as follows:

φ
...
ψ

φ→ ψ
→i.

It says: in order to prove φ→ ψ, make a temporary assumption of φ and then
prove ψ. In your proof of ψ, you can use φ and any of the other formulas
such as premises and provisional conclusions that you have made so far.
Proofs may nest boxes or open new boxes after old ones have been closed.
There are rules about which formulas can be used at which points in the
proof. Generally, we can only use a formula φ in a proof at a given point if
that formula occurs prior to that point and if no box which encloses that
occurrence of φ has been closed already.

The line immediately following a closed box has to match the pattern
of the conclusion of the rule that uses the box. For implies-introduction,
this means that we have to continue after the box with φ→ ψ, where φ
was the first and ψ the last formula of that box. We will encounter two
more proof rules involving proof boxes and they will require similar pattern
matching.



1.2 Natural deduction 13

Example 1.9 Here is another example of a proof using →i:

1 ¬q → ¬p premise

2 p assumption

3 ¬¬p ¬¬i 2

4 ¬¬q MT 1, 3

5 p → ¬¬q →i 2−4

which verifies the validity of the sequent ¬q → ¬p ⊢ p → ¬¬q. Notice that
we could apply the rule MT to formulas occurring in or above the box: at
line 4, no box has been closed that would enclose line 1 or 3.

At this point it is instructive to consider the one-line argument

1 p premise

which demonstrates p ⊢ p. The rule →i (with conclusion φ→ ψ) does not
prohibit the possibility that φ and ψ coincide. They could both be instanti-
ated to p. Therefore we may extend the proof above to

1 p assumption

2 p → p →i 1 − 1

We write ⊢ p → p to express that the argumentation for p → p does not
depend on any premises at all.

Definition 1.10 Logical formulas φ with valid sequent ⊢ φ are theorems.

Example 1.11 Here is an example of a theorem whose proof utilises most
of the rules introduced so far:

1 q → r assumption

2 ¬q → ¬p assumption

3 p assumption

4 ¬¬p ¬¬i 3

5 ¬¬q MT 2, 4

6 q ¬¬e 5

7 r →e 1, 6

8 p → r →i 3−7

9 (¬q → ¬p) → (p → r) →i 2−8

10 (q → r) → ((¬q → ¬p) → (p → r)) →i 1−9



14 1 Propositional logic

q → r

→

→

→

¬q → ¬p

r

p

Figure 1.1. Part of the structure of the formula (q → r) → ((¬q → ¬p) →
(p → r)) to show how it determines the proof structure.

Therefore the sequent ⊢ (q → r) → ((¬q → ¬p) → (p → r)) is valid,
showing that (q → r) → ((¬q → ¬p) → (p → r)) is another theorem.

Remark 1.12 Indeed, this example indicates that we may transform any
proof of φ1,φ2, . . . ,φn ⊢ ψ in such a way into a proof of the theorem

⊢ φ1 → (φ2 → (φ3 → (· · · → (φn → ψ) . . . )))

by ‘augmenting’ the previous proof with n lines of the rule →i applied to
φn, φn−1,. . . , φ1 in that order.

The nested boxes in the proof of Example 1.11 reveal a pattern of using
elimination rules first, to deconstruct assumptions we have made, and then
introduction rules to construct our final conclusion. More difficult proofs
may involve several such phases.

Let us dwell on this important topic for a while. How did we come up
with the proof above? Parts of it are determined by the structure of the for-
mulas we have, while other parts require us to be creative. Consider the log-
ical structure of (q → r) → ((¬q → ¬p) → (p → r)) schematically depicted
in Figure 1.1. The formula is overall an implication since → is the root of
the tree in Figure 1.1. But the only way to build an implication is by means



1.2 Natural deduction 15

of the rule →i. Thus, we need to state the assumption of that implication
as such (line 1) and have to show its conclusion (line 9). If we managed
to do that, then we know how to end the proof in line 10. In fact, as we
already remarked, this is the only way we could have ended it. So essentially
lines 1, 9 and 10 are completely determined by the structure of the formula;
further, we have reduced the problem to filling the gaps in between lines 1
and 9. But again, the formula in line 9 is an implication, so we have only
one way of showing it: assuming its premise in line 2 and trying to show
its conclusion in line 8; as before, line 9 is obtained by →i. The formula
p → r in line 8 is yet another implication. Therefore, we have to assume p in
line 3 and hope to show r in line 7, then →i produces the desired result in
line 8.

The remaining question now is this: how can we show r, using the three
assumptions in lines 1–3? This, and only this, is the creative part of this
proof. We see the implication q → r in line 1 and know how to get r (using
→e) if only we had q. So how could we get q? Well, lines 2 and 3 almost look
like a pattern for the MT rule, which would give us ¬¬q in line 5; the latter
is quickly changed to q in line 6 via ¬¬e. However, the pattern for MT does
not match right away, since it requires ¬¬p instead of p. But this is easily
accomplished via ¬¬i in line 4.

The moral of this discussion is that the logical structure of the formula
to be shown tells you a lot about the structure of a possible proof and
it is definitely worth your while to exploit that information in trying to
prove sequents. Before ending this section on the rules for implication,
let’s look at some more examples (this time also involving the rules for
conjunction).

Example 1.13 Using the rule ∧i, we can prove the validity of the sequent

p ∧ q → r ⊢ p → (q → r) :

1 p ∧ q → r premise

2 p assumption

3 q assumption

4 p ∧ q ∧i 2, 3

5 r →e 1, 4

6 q → r →i 3−5

7 p → (q → r) →i 2−6



16 1 Propositional logic

Example 1.14 Using the two elimination rules ∧e1 and ∧e2, we can show
that the ‘converse’ of the sequent above is valid, too:

1 p → (q → r) premise

2 p ∧ q assumption

3 p ∧e1 2

4 q ∧e2 2

5 q → r →e 1, 3

6 r →e 5, 4

7 p ∧ q → r →i 2−6

The validity of p → (q → r) ⊢ p ∧ q → r and p ∧ q → r ⊢ p → (q → r)
means that these two formulas are equivalent in the sense that we can prove
one from the other. We denote this by

p ∧ q → r ⊣⊢ p → (q → r).

Since there can be only one formula to the right of ⊢, we observe that each
instance of ⊣⊢ can only relate two formulas to each other.

Example 1.15 Here is an example of a proof that uses introduction and
elimination rules for conjunction; it shows the validity of the sequent p →
q ⊢ p ∧ r → q ∧ r:

1 p → q premise

2 p ∧ r assumption

3 p ∧e1 2

4 r ∧e2 2

5 q →e 1, 3

6 q ∧ r ∧i 5, 4

7 p ∧ r → q ∧ r →i 2−6

The rules for disjunction The rules for disjunction are different in spirit
from those for conjunction. The case for conjunction was concise and clear:
proofs of φ ∧ ψ are essentially nothing but a concatenation of a proof of φ and
a proof of ψ, plus an additional line invoking ∧i. In the case of disjunctions,
however, it turns out that the introduction of disjunctions is by far easier
to grasp than their elimination. So we begin with the rules ∨i1 and ∨i2.
From the premise φ we can infer that ‘φ or ψ’ holds, for we already know



1.2 Natural deduction 17

that φ holds. Note that this inference is valid for any choice of ψ. By the
same token, we may conclude ‘φ or ψ’ if we already have ψ. Similarly, that
inference works for any choice of φ. Thus, we arrive at the proof rules

φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2.

So if p stands for ‘Agassi won a gold medal in 1996.’ and q denotes the
sentence ‘Agassi won Wimbledon in 1996.’ then p ∨ q is the case because p
is true, regardless of the fact that q is false. Naturally, the constructed dis-
junction depends upon the assumptions needed in establishing its respective
disjunct p or q.

Now let’s consider or-elimination. How can we use a formula of the form
φ ∨ ψ in a proof? Again, our guiding principle is to disassemble assumptions
into their basic constituents so that the latter may be used in our argumen-
tation such that they render our desired conclusion. Let us imagine that we
want to show some proposition χ by assuming φ ∨ ψ. Since we don’t know
which of φ and ψ is true, we have to give two separate proofs which we need
to combine into one argument:

1. First, we assume φ is true and have to come up with a proof of χ.
2. Next, we assume ψ is true and need to give a proof of χ as well.
3. Given these two proofs, we can infer χ from the truth of φ ∨ ψ, since our case

analysis above is exhaustive.

Therefore, we write the rule ∨e as follows:

φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e.

It is saying that: if φ ∨ ψ is true and – no matter whether we assume φ or
we assume ψ – we can get a proof of χ, then we are entitled to deduce χ
anyway. Let’s look at a proof that p ∨ q ⊢ q ∨ p is valid:

1 p ∨ q premise

2 p assumption

3 q ∨ p ∨i2 2

4 q assumption

5 q ∨ p ∨i1 4

6 q ∨ p ∨e 1, 2−3, 4−5



18 1 Propositional logic

Here are some points you need to remember about applying the ∨e rule.

! For it to be a sound argument we have to make sure that the conclusions in each
of the two cases (the χ in the rule) are actually the same formula.! The work done by the rule ∨e is the combining of the arguments of the two cases
into one.! In each case you may not use the temporary assumption of the other case, unless
it is something that has already been shown before those case boxes began.! The invocation of rule ∨e in line 6 lists three things: the line in which the
disjunction appears (1), and the location of the two boxes for the two cases (2–3
and 4–5).

If we use φ ∨ ψ in an argument where it occurs only as an assumption or
a premise, then we are missing a certain amount of information: we know
φ, or ψ, but we don’t know which one of the two it is. Thus, we have
to make a solid case for each of the two possibilities φ or ψ; this resem-
bles the behaviour of a CASE or IF statement found in most programming
languages.

Example 1.16 Here is a more complex example illustrating these points.
We prove that the sequent q → r ⊢ p ∨ q → p ∨ r is valid:

1 q → r premise

2 p ∨ q assumption

3 p assumption

4 p ∨ r ∨i1 3

5 q assumption

6 r →e 1, 5

7 p ∨ r ∨i2 6

8 p ∨ r ∨e 2, 3−4, 5−7

9 p ∨ q → p ∨ r →i 2−8

Note that the propositions in lines 4, 7 and 8 coincide, so the application of
∨e is legitimate.

We give some more example proofs which use the rules ∨e, ∨i1 and ∨i2.

Example 1.17 Proving the validity of the sequent (p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
is surprisingly long and seemingly complex. But this is to be expected, since



1.2 Natural deduction 19

the elimination rules break (p ∨ q) ∨ r up into its atomic constituents p, q
and r, whereas the introduction rules then built up the formula p ∨ (q ∨ r).

1 (p ∨ q) ∨ r premise

2 (p ∨ q) assumption

3 p assumption

4 p ∨ (q ∨ r) ∨i1 3

5 q assumption

6 q ∨ r ∨i1 5

7 p ∨ (q ∨ r) ∨i2 6

8 p ∨ (q ∨ r) ∨e 2, 3−4, 5−7

9 r assumption

10 q ∨ r ∨i2 9

11 p ∨ (q ∨ r) ∨i2 10

12 p ∨ (q ∨ r) ∨e 1, 2−8, 9−11

Example 1.18 From boolean algebra, or circuit theory, you may know that
disjunctions distribute over conjunctions. We are now able to prove this in
natural deduction. The following proof:

1 p ∧ (q ∨ r) premise

2 p ∧e1 1

3 q ∨ r ∧e2 1

4 q assumption

5 p ∧ q ∧i 2, 4

6 (p ∧ q) ∨ (p ∧ r) ∨i1 5

7 r assumption

8 p ∧ r ∧i 2, 7

9 (p ∧ q) ∨ (p ∧ r) ∨i2 8

10 (p ∧ q) ∨ (p ∧ r) ∨e 3, 4−6, 7−9

verifies the validity of the sequent p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r) and you
are encouraged to show the validity of the ‘converse’ (p ∧ q) ∨ (p ∧ r) ⊢ p ∧
(q ∨ r) yourself.



20 1 Propositional logic

A final rule is required in order to allow us to conclude a box with a for-
mula which has already appeared earlier in the proof. Consider the sequent
⊢ p → (q → p), whose validity may be proved as follows:

1 p assumption

2 q assumption

3 p copy 1

4 q → p →i 2−3

5 p → (q → p) →i 1−4

The rule ‘copy’ allows us to repeat something that we know already. We need
to do this in this example, because the rule →i requires that we end the inner
box with p. The copy rule entitles us to copy formulas that appeared before,
unless they depend on temporary assumptions whose box has already been
closed. Though a little inelegant, this additional rule is a small price to pay
for the freedom of being able to use premises, or any other ‘visible’ formulas,
more than once.

The rules for negation We have seen the rules ¬¬i and ¬¬e, but we
haven’t seen any rules that introduce or eliminate single negations. These
rules involve the notion of contradiction. This detour is to be expected since
our reasoning is concerned about the inference, and therefore the preserva-
tion, of truth. Hence, there cannot be a direct way of inferring ¬φ, given
φ.

Definition 1.19 Contradictions are expressions of the form φ ∧ ¬φ or ¬φ ∧
φ, where φ is any formula.

Examples of such contradictions are r ∧ ¬r, (p → q) ∧ ¬(p → q) and ¬(r ∨
s → q) ∧ (r ∨ s → q). Contradictions are a very important notion in logic.
As far as truth is concerned, they are all equivalent; that means we should
be able to prove the validity of

¬(r ∨ s → q) ∧ (r ∨ s → q) ⊣⊢ (p → q) ∧ ¬(p → q) (1.2)

since both sides are contradictions. We’ll be able to prove this later, when
we have introduced the rules for negation.

Indeed, it’s not just that contradictions can be derived from contradic-
tions; actually, any formula can be derived from a contradiction. This can be



1.2 Natural deduction 21

confusing when you first encounter it; why should we endorse the argument
p ∧ ¬p ⊢ q, where

p : The moon is made of green cheese.
q : I like pepperoni on my pizza.

considering that our taste in pizza doesn’t have anything to do with the
constitution of the moon? On the face of it, such an endorsement may seem
absurd. Nevertheless, natural deduction does have this feature that any for-
mula can be derived from a contradiction and therefore it makes this argu-
ment valid. The reason it takes this stance is that ⊢ tells us all the things
we may infer, provided that we can assume the formulas to the left of it.
This process does not care whether such premises make any sense. This has
at least the advantage that we can match ⊢ to checks based on semantic
intuitions which we formalise later by using truth tables: if all the premises
compute to ‘true’, then the conclusion must compute ‘true’ as well. In partic-
ular, this is not a constraint in the case that one of the premises is (always)
false.

The fact that ⊥ can prove anything is encoded in our calculus by the
proof rule bottom-elimination:

⊥
φ

⊥e.

The fact that ⊥ itself represents a contradiction is encoded by the proof rule
not-elimination:

φ ¬φ
⊥ ¬e.

Example 1.20 We apply these rules to show that ¬p ∨ q |− p → q is
valid:

1 ¬p ∨ q

2 ¬p premise

3 p assumption

4 ⊥ ¬e 3, 2

5 q ⊥e 4

6 p → q →i 3−5

q premise

p assumption

q copy 2

p → q →i 3−4

7 p → q ∨e 1, 2−6



22 1 Propositional logic

Notice how, in this example, the proof boxes for ∨e are drawn side by side
instead of on top of each other. It doesn’t matter which way you do it.

What about introducing negations? Well, suppose we make an assumption
which gets us into a contradictory state of affairs, i.e. gets us ⊥. Then our
assumption cannot be true; so it must be false. This intuition is the basis
for the proof rule ¬i:

φ
...
⊥

¬φ ¬i.

Example 1.21 We put these rules in action, demonstrating that the se-
quent p → q, p → ¬q ⊢ ¬p is valid:

1 p → q premise

2 p → ¬q premise

3 p assumption

4 q →e 1, 3

5 ¬q →e 2, 3

6 ⊥ ¬e 4, 5

7 ¬p ¬i 3−6

Lines 3–6 contain all the work of the ¬i rule. Here is a second example,
showing the validity of a sequent, p → ¬p ⊢ ¬p, with a contradictory formula
as sole premise:

1 p → ¬p premise

2 p assumption

3 ¬p →e 1, 2

4 ⊥ ¬e 2, 3

5 ¬p ¬i 2−4

Example 1.22 We prove that the sequent p → (q → r), p, ¬r |− ¬q is valid,



1.2 Natural deduction 23

without using the MT rule:

1 p → (q → r) premise

2 p premise

3 ¬r premise

4 q assumption

5 q → r →e 1, 2

6 r →e 5, 4

7 ⊥ ¬e 6, 3

8 ¬q ¬i 4−7

Example 1.23 Finally, we return to the argument of Examples 1.1 and 1.2,
which can be coded up by the sequent p ∧ ¬q → r, ¬r, p |− q whose validity
we now prove:

1 p ∧ ¬q → r premise

2 ¬r premise

3 p premise

4 ¬q assumption

5 p ∧ ¬q ∧i 3, 4

6 r →e 1, 5

7 ⊥ ¬e 6, 2

8 ¬¬q ¬i 4−7

9 q ¬¬e 8

1.2.2 Derived rules

When describing the proof rule modus tollens (MT), we mentioned that it
is not a primitive rule of natural deduction, but can be derived from some
of the other rules. Here is the derivation of

φ→ ψ ¬ψ
¬φ MT



24 1 Propositional logic

from →e, ¬e and ¬i:

1 φ→ ψ premise

2 ¬ψ premise

3 φ assumption

4 ψ →e 1, 3

5 ⊥ ¬e 4, 2

6 ¬φ ¬i 3−5

We could now go back through the proofs in this chapter and replace applica-
tions of MT by this combination of →e, ¬e and ¬i. However, it is convenient
to think of MT as a shorthand (or a macro).

The same holds for the rule
φ

¬¬φ ¬¬i.

It can be derived from the rules ¬i and ¬e, as follows:

1 φ premise

2 ¬φ assumption

3 ⊥ ¬e 1, 2

4 ¬¬φ ¬i 2−3

There are (unboundedly) many such derived rules which we could write
down. However, there is no point in making our calculus fat and unwieldy;
and some purists would say that we should stick to a minimum set of rules,
all of which are independent of each other. We don’t take such a purist view.
Indeed, the two derived rules we now introduce are extremely useful. You will
find that they crop up frequently when doing exercises in natural deduction,
so it is worth giving them names as derived rules. In the case of the second
one, its derivation from the primitive proof rules is not very obvious.

The first one has the Latin name reductio ad absurdum. It means ‘reduc-
tion to absurdity’ and we will simply call it proof by contradiction (PBC
for short). The rule says: if from ¬φ we obtain a contradiction, then we are
entitled to deduce φ:

¬φ
...
⊥

φ
PBC.



1.2 Natural deduction 25

This rule looks rather similar to ¬i, except that the negation is in a different
place. This is the clue to how to derive PBC from our basic proof rules.
Suppose we have a proof of ⊥ from ¬φ. By →i, we can transform this into
a proof of ¬φ→ ⊥ and proceed as follows:

1 ¬φ→ ⊥ given

2 ¬φ assumption

3 ⊥ →e 1, 2

4 ¬¬φ ¬i 2−3

5 φ ¬¬e 4

This shows that PBC can be derived from →i, ¬i, →e and ¬¬e.
The final derived rule we consider in this section is arguably the most

useful to use in proofs, because its derivation is rather long and complicated,
so its usage often saves time and effort. It also has a Latin name, tertium
non datur ; the English name is the law of the excluded middle, or LEM for
short. It simply says that φ ∨ ¬φ is true: whatever φ is, it must be either true
or false; in the latter case, ¬φ is true. There is no third possibility (hence
excluded middle): the sequent ⊢ φ ∨ ¬φ is valid. Its validity is implicit, for
example, whenever you write an if-statement in a programming language:
‘if B {C1} else {C2}’ relies on the fact that B ∨ ¬B is always true (and
that B and ¬B can never be true at the same time). Here is a proof in
natural deduction that derives the law of the excluded middle from basic
proof rules:

1 ¬(φ ∨ ¬φ) assumption

2 φ assumption

3 φ ∨ ¬φ ∨i1 2

4 ⊥ ¬e 3, 1

5 ¬φ ¬i 2−4

6 φ ∨ ¬φ ∨i2 5

7 ⊥ ¬e 6, 1

8 ¬¬(φ ∨ ¬φ) ¬i 1−7

9 φ ∨ ¬φ ¬¬e 8



26 1 Propositional logic

Example 1.24 Using LEM, we show that p → q ⊢ ¬p ∨ q is valid:

1 p → q premise

2 ¬p ∨ p LEM

3 ¬p assumption

4 ¬p ∨ q ∨i1 3

5 p assumption

6 q →e 1, 5

7 ¬p ∨ q ∨i2 6

8 ¬p ∨ q ∨e 2, 3−4, 5−7

It can be difficult to decide which instance of LEM would benefit the progress
of a proof. Can you re-do the example above with q ∨ ¬q as LEM?

1.2.3 Natural deduction in summary

The proof rules for natural deduction are summarised in Figure 1.2. The
explanation of the rules we have given so far in this chapter is declarative;
we have presented each rule and justified it in terms of our intuition about
the logical connectives. However, when you try to use the rules yourself,
you’ll find yourself looking for a more procedural interpretation; what does
a rule do and how do you use it? For example,

! ∧i says: to prove φ ∧ ψ, you must first prove φ and ψ separately and then use
the rule ∧i.! ∧e1 says: to prove φ, try proving φ ∧ ψ and then use the rule ∧e1. Actually,
this doesn’t sound like very good advice because probably proving φ ∧ ψ will
be harder than proving φ alone. However, you might find that you already have
φ ∧ ψ lying around, so that’s when this rule is useful. Compare this with the
example sequent in Example 1.15.! ∨i1 says: to prove φ ∨ ψ, try proving φ. Again, in general it is harder to prove
φ than it is to prove φ ∨ ψ, so this will usually be useful only if you’ve already
managed to prove φ. For example, if you want to prove q |− p ∨ q, you certainly
won’t be able simply to use the rule ∨i1, but ∨i2 will work.! ∨e has an excellent procedural interpretation. It says: if you have φ ∨ ψ, and you
want to prove some χ, then try to prove χ from φ and from ψ in turn. (In those
subproofs, of course you can use the other prevailing premises as well.)! Similarly, →i says, if you want to prove φ→ ψ, try proving ψ from φ (and the
other prevailing premises).! ¬i says: to prove ¬φ, prove ⊥ from φ (and the other prevailing premises).



1.2 Natural deduction 27

The basic rules of natural deduction:
introduction elimination

∧ φ ψ

φ ∧ ψ ∧i
φ ∧ ψ
φ

∧e1
φ ∧ ψ
ψ

∧e2

∨ φ

φ ∨ ψ ∨i1
ψ

φ ∨ ψ ∨i2
φ ∨ ψ

φ
...
χ

ψ
...
χ

χ
∨e

→

φ
...
ψ

φ→ ψ
→i

φ φ→ ψ

ψ
→e

¬

φ
...
⊥

¬φ ¬i
φ ¬φ

⊥ ¬e

⊥ (no introduction rule for ⊥)
⊥
φ

⊥e

¬¬ ¬¬φ
φ

¬¬e

Some useful derived rules:
φ→ ψ ¬ψ

¬φ MT
φ

¬¬φ ¬¬i

¬φ
...
⊥

φ
PBC

φ ∨ ¬φ LEM

Figure 1.2. Natural deduction rules for propositional logic.


